Mitosis gets harder thanks to new gene discovery

Scientists from the University of Bath have found that a protein called RASSF7 is essential for mitosis, the process by which a cell divides in two.

In research published in the journal Molecular Biology of the Cell, the scientists have shown that the protein is essential for building the microtubules that allow the two halves of the cell to slide apart.

“What makes mitosis so interesting is that it is one of the biological processes that everyone remembers from their days at school,” said Dr Andrew Chalmers from the University’s Department of Biology & Biochemistry.

“As well as being one of Nature’s most important processes, our interest in mitosis stems from the fact that if you want to kill cancer cells, then stopping them from dividing is a useful way of doing this.

“Several cancer treatments block cell division by targeting microtubules, Taxol is a well known example. It is even possible that RASSF7 might be a future drug target”.

During the different phases of mitosis the pairs of chromosomes within the cell condense and attach to microtubule fibres that pull the sister chromatids to opposite sides of the cell.

The cell then divides in cytokinesis, to produce two identical daughter cells.

RASSF7 is the latest of a battery of proteins involved in managing the complex process of mitosis.

“During mitosis, the chromosomes containing the DNA are pulled apart in two halves by an array of microtubules centred on the centrosomes,” said Dr Chalmers.

“Without the RASSF7 protein, the microtubules do not develop properly and cell division is halted.

“This is the first functional study of this protein, and we hope to extend our knowledge of how it works in the future.”

The research was funded by the Medical Research Council.

The work was carried out in Dr Chalmers laboratory by Dr Victoria Sherwood and two final year undergraduate project students from the University, Ria Manbodh and Carol Sheppard.

Dr Sherwood will now continue her research on cancer at a new job at the Lund University Clinical Research Centre, Sweden.

The University of Bath is one of the UK's leading universities, with an international reputation for quality research and teaching. In 15 subject areas the University of Bath is rated in the top ten in the country.

Media Contact

Andrew McLaughlin EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors