Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists make first boron nanowhiskers

19.06.2002


’Little shavers’ could prove key in nanoelectronics



They’re cute little shavers, and they could play a key role in the "small" revolution about us.

They’re boron nanowhiskers, the world’s first such crystalline nanowires, made by chemists at Washington University in St. Louis.


Reporting in the May 1 issue of the Journal of the American Chemical Society (JACS), graduate student Carolyn Jones Otten, her advisor William. E. Buhro, Ph.D., Washington University professor of chemistry, and their collaborators report that they have made boron nanowhiskers by chemical vapor deposition. The particles have diameters in the range of 20 to 200 nanometers and the whiskers (also called nanowires) are semiconducting and show properties of elemental boron.

To get an idea of scale, one nanometer is one one-thousandth of a micrometer; in comparison, a strand of human hair is typically 50 to 100 micrometers thick.

In the nano-world, the carbon nanotube is king, considered the particle most likely to make new materials, and increasingly valued as potential metallic conductors in the burgeoning experimental world of molecular electronics. However, carbon has its limitations: its cell wall structure and variable conductivity make it unreliable as a conductor -- only one-third of those grown have metallic characteristics; the others are semiconductors. And one specific type can’t predictably be grown; instead, a mix of types is grown together.

The Buhro group at Washington University in St. Louis turned to boron, one spot to the left of carbon in the periodic table, to see if it would be a good candidate. If nanotubes could be made of boron and produced in large quantities, they should have the advantage of having consistent properties despite individual variation in diameter and wall structure. The discovery that the nanowhiskers are semiconducting make them promising candidates for nanoscale electronic wires.

"The theoretical papers predicted that boron nanotubes may exist and if they do, should have consistent electrical properties regardless of their helicity. This would be a distinct advantage over carbon nanotubes," said Otten. "So, we set out to make these. We had already done some work on boron nitride nanotubes, which are similar in structure to carbon nanotubes but they are electrically insulating. So, we used a similar method to try to make boron nanotubes. We grew things that looked very promising -- long thin wire-like structures. At first we thought they were hollow, but after closer examination, we determined that they were dense whiskers, not hollow nanotubes."

The notion of boron nanotubes creates more excitement in nanotechnology than nanowhiskers because of their unique structure, which could be likened to a distinct form of an element. Carbon, for instance, is present as graphite and diamond, and, recently discovered, in "buckyball" and nanotube conformations. Also, boron nanotubes are predicted by theory to have very high conductivity, something groups like Buhro’s are eager to measure.

The nanowhiskers made by Buhro’s group were electrically characterized to see if they were good conductors despite being whiskers rather than tubes. They were found to exhibit semiconducting behavior. However, bulk boron can be "doped" with other atoms to increase its conductivity. Otten, Buhro and their collaborators are now working on trying to do the same thing with boron nanowhiskers to increase their conductivity. Carbon nanotubes have been doped, as have various other kinds of nanowires, and assembled in combinations of conducting and semiconducting ones to make for several different microscale electronic components such as rectifiers, field-effect transistors and diodes.

"Now we’re trying to dope our boron nano-whiskers to see if we can increase their conductivity," Otten said. "We would still be interested in discovering boron nanotubes, but we’re just not quite sure how to make them."

Since the early 90s Buhro and his group have been making many kinds of nanowires and nanotubes that might ultimately be incorporated into nanoelectronic devices. Nanowires and nanotubes are receiving much current attention as potential transistors, wires, and switches for ultra-small circuits and devices to be built from them on almost a molecular scale.

"If you want to make electronics smaller and smaller, you have to make the component devices and the wires that interconnect them smaller and smaller," Buhro said. "We are trying to build the scientific infrastructure for electronic nanotechnology, and to understand the basic principles involved. We have to find out how these nano-wires work and how to connect them into circuits and functional devices. Even when we have that, nobody yet knows how a computer chip will be made that uses these things. That is a wide-open, unsolved problem. But the fundamental science to be done is potentially important and is going to be very fun."

Tony Fitzpatrick | EurekAlert!

More articles from Life Sciences:

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

nachricht Biological signalling processes in intelligent materials
18.07.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Pollen taxi for bacteria

18.07.2018 | Life Sciences

Biological signalling processes in intelligent materials

18.07.2018 | Life Sciences

Study suggests buried Internet infrastructure at risk as sea levels rise

18.07.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>