Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Link 11 Genetic Variations to Type 2 Diabetes

03.04.2008
Mathematicians at Michigan Technological University have developed powerful new tools for winnowing out the genes behind some of humanity’s most intractable diseases.

With one, they can cast back through generations to pinpoint the genes behind inherited illness. With another, they have isolated 11 variations within genes—called single nucleotide polymorphisms, SNPs or "snips"—associated with type 2 diabetes.

"With chronic, complex diseases like Parkinson's, diabetes and ALS [Lou Gehrig's disease], multiple genes are involved," said Qiuying Sha, an assistant professor of mathematical sciences. "You need a powerful test."

That test is the Ensemble Learning Approach (ELA), software that can detect a set of SNPs that jointly have a significant effect on a disease.

... more about:
»Genetic »SNP »genes

With complex inherited conditions, including type 2 diabetes, single genes may precipitate the disease on their own, while other genes cause disease when they act together. In the past, finding these gene-gene combinations has been especially unwieldy, because the calculations needed to match up suspect genes among the 500,000 or so in the human genome have been virtually impossible.

ELA sidesteps this problem, first by drastically narrowing the field of potentially dangerous genes, and second, by applying statistical methods to determine which SNPs act on their own and which act in combination. "We thought it was pretty cool," Sha said.

To test their model on real data, Sha’s team analyzed genes from over 1,000 people in the United Kingdom, half with type 2 diabetes and half without. They identified 11 SNPs that, singly or in pairs, are linked to the disease with a high degree of probability. Their work has been accepted by the journal Genetic Epidemiology and is available online at http://www3.interscience.wiley.com/cgi-bin/abstract/117890704/ABSTRACT .

ELA is used to compare the genetic makeup of unrelated individuals to sort out disease-related genes. The team has also developed another approach, which uses a two-stage association test that incorporates founders' phenotypes, called TTFP, that can examine the genomes of family members going back generations.

"In the past, researchers have dealt with the nuclear family, parents and children, but this could go back to grandparents, great-grandparents . . . as far back as you want."

The team has published their findings in the European Journal of Human Genetics. An abstract is available at www.nature.com/ejhg/journal/v15/n11/abs/5201902a.html .

Now that they’ve developed the software, the analysis is relatively simple, says Sha. But getting the genetic data to work on is not. "We don’t have the data sets yet to work with," she says, clearly frustrated. "That’s the problem with having no medical school."

Those who do have data sets, however, can use the team’s software to help find the causes—and hopefully, the cures—for a panoply of illnesses. ELA is available in Windows and Linux versions at www.math.mtu.edu/~shuzhang/software.html, and TTFP is available by request.

Other members of Michigan Tech's statistical genetics group are Associate Professor Shuanglin Zhang and postdoctoral scientists Zhaogong Zhang and Tao Feng.

Marcia Goodrich | EurekAlert!
Further information:
http://www.mtu.edu

Further reports about: Genetic SNP genes

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>