Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists: New technique identifies molecular 'biomarkers' for disease

02.04.2008
University of Florida chemists are the first to use a new tool to identify the molecular signatures of serious diseases -- without any previous knowledge of what these microscopic signatures or “biomarkers” should look like.

Reported this month in the online edition of the Journal of Proteome Research, the advance could one day lead to earlier detection and improved treatment of some types of cancer as well as other diseases.

“With many diseases, the problem has been that we really don’t know what to look for,” said Weihong Tan, a professor of chemistry and the lead author of the paper. “What we’ve done is create a technique to identify the biomarkers despite that limitation.”

Doctors often diagnose cancer and other diseases based on the appearance of a tumor or a patient’s symptoms. While such traditional methods can be effective, they sometimes identify a disease only after it is established. For example, clinicians may get tipped off to the presence of lung cancer – which kills more people than any other type of cancer – based on visible images of a tumor that appear on radiological exams of a patient’s lungs.

... more about:
»Aptamer »Biomarker »diseased

Because earlier detection typically improves outcomes, doctors would like to spot disease at the molecular level, before it grows or spreads and manifests itself in more obvious and harmful ways. Given that diseased cells’ molecular structures differ from those of healthy ones, that approach should be possible, and researchers have had some success finding such “biomarkers” using antibodies, Tan said. But despite years of research, biomarkers for most diseases remain elusive or unreliable, he said.

His group turned to “aptamers,” single-strand chains of DNA or RNA that recognize and bind to target protein molecules, as a new tool. His paper reports the first-ever successful use of the aptamers to discover a molecular biomarker – in this case, one for leukemia.

Tan said his group used cell-SELEX, a process his group developed and patented.

Researchers create trillions of different varieties of aptamers in a solution. They then immerse cells known to carry the sought-after disease in the solution. After an incubation period, they rinse the cells.

The vast majority of the aptamers wash away, but those with stronger molecular affinity for the diseased cells remain. The researchers repeat the process several times, eventually shrinking the pool of aptamers to as few as 10 to 25 very strongly attached aptamers – those most closely associated with the diseased cells. Analysis then reveals these aptamers’ molecular structure, as well as the molecular structure of the cells’ biomarkers they bind to.

“As long as the molecules in question are expressed in a substantially different way on diseased and normal cells, they can be identified,” Tan said.

Rebecca Sutphen, associate professor and director of the Genetic Counseling & Testing Service at the H. Lee Moffitt Cancer Center & Research Institute in Tampa, said improved diagnosis may not be the only application of the research.

“The opportunity to identify cancer cell-specific biomarkers and potentially detect small numbers of cancer cells has many potential clinical applications, including disease detection, better imaging of tumors and even potential application for stem cells,” she said.

Other biomarkers have been found for leukemia, but none is particularly reliable, Tan said. Tan and his colleagues reported using aptamers to recognize cancer cells in a 2006 paper in the Proceedings of the National Academy of Sciences. Tan said the latest paper advances that work by revealing the target biomarkers the selected aptamers recognize, Tan said. These targets will form a molecular foundation in understanding diseases, he said.

“In 2006, we did not know what the aptamer recognized on the cancer cell surface,” he said. “In this current work, we report discovering these biomarkers, which then form the molecular foundation for us to understand the cancer and to prepare different molecular tools for molecular medicine.”

Tan said the research is particularly promising because aptamers are relatively easy and inexpensive to manufacture compared with antibodies. “This offers the potential for wider application,” he said, adding that aptamers could one day be used not only to detect disease, but also to ferry therapeutic agents to diseased cells.

Weihong Tan | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: Aptamer Biomarker diseased

More articles from Life Sciences:

nachricht The hidden structure of the periodic system
17.06.2019 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>