Potential new target for multiple sclerosis therapy

Collagenase-2 is a member of a protein family called matrix metalloproteinases (MMPs, collagenase-2 is MMP8), a large group of enzymes that break down collagen and other components of the body's connective tissue. MMPs have been implicated in contributing to MS by degrading the tissue that maintains the blood-brain barrier, thus allowing unwanted cells to invade and break down nerves. In fact, MMPs are found in elevated amounts in the blood and spinal fluid of diseased individuals.

Using a mouse model of MS, Carlos Lopez-Otin and colleagues performed two analyses on MMP8 to determine how relevant this protein is to the disease. First, they developed mutant mice deficient in the gene for MMP8 and found that these mice had a fewer invading cells in the brain, fewer damaged nerves, and a general improvement in their clinical profile.

They also gave diseased mice a drug that blocked MMP8 activity and found that this, too, could reduce the severity of disease symptoms. Taken together, these promising findings provide the first causal evidence for MMP8 in the development of MS, and offer a new therapeutic target.

Media Contact

Nick Zagorski EurekAlert!

More Information:

http://www.asbmb.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors