Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano-Softball Made of DNA

01.04.2008
“Programmed” oligonucleoides with three branches organize themselves into dodecahedra

For quite some time, DNA, the stuff our genes are made of, has also been considered the building material of choice for nanoscale objects. A team led by Günter von Kiedrowski at the Ruhr University in Bochum has now made a dodecahedron (a geometric shape with twelve surfaces) from DNA building blocks.

As reported in the journal Angewandte Chemie, these objects are formed in a self-assembly process from 20 individual trisoligonucleotides, building blocks consisting of a “branching junction” and three short DNA strands.

A regular dodecahedron is a geometric shape made of 12 pentagons of equal size, three of which are connected at every vertex. This results in a structure with 30 edges and 20 vertices. In order to produce a hollow dodecahedral object from DNA, the researchers used 20 “three-legged” building blocks (three DNA strands connected together at one point). The centers of these building blocks represent the vertices of the dodecahedron. The three edges projecting from each vertex are formed when a single strand of DNA converts two neighboring bridging components into a double strand.

... more about:
»DNA »dodecahedra »dodecahedron »sequence

In order for this process to result in a dodecahedron and not some other random geometric object, all of the DNA strands must have a different sequence. Among these, there must, however, be pairs of complementary strands that can bind to each other.

By using a computer program, the researchers identified a set of 30 independent, 15-base-pair-long, double-stranded DNA sequences with similar physical properties. The double-stranded sequences were assigned to the individual edges of the dodecahedron and to specific vertices for termination. It was then determined which three single-stranded sequences needed to be attached to each three-legged junction for the predetermined structure to form.

The team synthesized the 20 computed trisoligonucleotides by means of a solid-phase synthesis. The three DNA strands were always attached by way of an aromatic six-membered carbon ring. When mixed in equal parts in a buffer solution, these building blocks do aggregate to form the expected product: regular dodecahedra. Atomic force microscopy images reveal them to be uniform particles with a diameter of about 20 nm. Under pressure, the dodecahedra are quite flexible, the can be deformed like “soft balls” without incurring any damage.

If the trisoligonucleotides are equipped with pendant “arms”, the dodecahedra can be outfitted with additional functional molecules. In this way, highly complex nanoconstructs, resembling little viruses in shape and size, should be accessible in the future. Potential applications range from medical diagnostics to nanoelectronics.

Author: Günter von Kiedrowski, Ruhr-Universität Bochum (Germany), http://www.ruhr-uni-bochum.de/oc1/mitarbeiter/Guenter-Kiedrowski.html

Title: Self-Assembly of a DNA Dodecahedron from 20 Trisoligonucleotides with C3h Linkers

Angewandte Chemie International Edition, doi: 10.1002/anie.200702682

Günter von Kiedrowski | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.ruhr-uni-bochum.de/oc1/mitarbeiter/Guenter-Kiedrowski.html

Further reports about: DNA dodecahedra dodecahedron sequence

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>