Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find a key culprit in stroke brain cell damage

31.03.2008
Researchers have identified a key player in the killing of brain cells after a stroke or a seizure. The protein asparagine endopeptidase (AEP) unleashes enzymes that break down brain cells' DNA, scientists at Emory University School of Medicine have found.

The results are published in the March 28 issue of the journal Molecular Cell.

Finding drugs that block AEP may help doctors limit permanent brain damage following strokes or seizures, says senior author Keqiang Ye, PhD, associate professor of pathology and laboratory medicine at Emory.

When a stroke obstructs blood flow to part of the brain, the lack of oxygen causes a buildup of lactic acid, the same chemical that appears in the muscles during intense exercise. In addition, a flood of chemicals that brain cells usually use to communicate with each other over-excites the cells. Epileptic seizures can have similar effects.

... more about:
»AEP »DNA »Programmed »damage »seizure »stroke

While some brain cells die directly because of lack of oxygen, others undergo programmed cell death, a normal developmental process where cells actively destroy their own DNA.

"The mystery was: how do the acidic conditions trigger DNA damage?" Ye says. "This was a very surprising result because previously we had no idea that AEP was involved in this process."

AEP is a protease, a class of enzymes that cuts other proteins. AEP is also called legumain because of its relatives in plants, and is found at its highest levels in the kidney, says Ye.

He and his co-workers had suspected that another class of proteases called caspases, involved in programmed cell death, controlled DNA damage after a stroke.

At first, he and postdoctoral fellow Zhixue Liu, PhD, thought the results of a critical experiment that led them to AEP were an aberration because the experiment was performed under overly acidic conditions.

"But if you can repeat the mistake, it's not a mistake," Dr. Ye says, adding that follow-up work allowed them to set aside caspases as suspects and focus on AEP.

The researchers began by looking for proteins that stick to another protein called PIKE-L, which they previously had studied because of its ability to interfere with programmed cell death in brain cells.

They discovered that PIKE-L sticks to SET, a protein that other scientists had found regulates DNA-eating enzymes involved in programmed cell death. In addition, PIKE-L appears to protect SET from attack by AEP.

Liu and Ye found that a drug scientists use to mimic the acidic overload induced by stroke activates AEP, driving it to break down DNA in brain cells. In mice genetically engineered to lack AEP, both the drug and an artificial stroke resulted in reduced DNA damage and less brain cell death than in regular mice.

This outcome suggests "that AEP might be the major proteinase mediating this devastating process," the authors wrote.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

Further reports about: AEP DNA Programmed damage seizure stroke

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>