Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings reveal how dengue virus matures, becomes infectious

31.03.2008
Biologists at Purdue University have determined why dengue virus particles undergo structural changes as they mature in host cells and how the changes are critical for enabling the virus to infect new host cells.

The findings pertain to all viruses in the family of flaviviruses, which includes a number of dangerous insect-borne diseases such as dengue, West Nile, yellow fever and St. Louis encephalitis. Dengue is prevalent in Southeast Asia, Central America and South America. The virus, which is spread by mosquitoes, infects more than 50 million people annually, killing about 24,000 each year, primarily in tropical regions.

The researchers detailed critical changes that take place as the virus is assembled and moves from the inner to the outer portions of its host cell before being secreted so that it can infect other cells. Virus particles are exposed to progressively less acidic conditions as they traverse this "secretory pathway," and this changing acidity plays a vital role in the maturation of the virus.

"This is possibly the most detailed understanding of how any virus matures," said Michael Rossmann, the Hanley Distinguished Professor of Biological Sciences.

The research is a collaboration of work in two laboratories at Purdue, one operated by Rossmann and other operated by Jue Chen, an associate professor of biological sciences. They led the research with I-Mei Yu, a postdoctoral research associate working with Chen; and Long Li, a doctoral student working with Rossmann.

Findings are detailed in two back-to-back research papers appearing Friday (March 28) in the journal Science. The papers' co-authors include Yu, Li, Rossmann, Chen and Richard J. Kuhn, a professor and head of Purdue's Department of Biological Sciences.

Whereas the pathway for viruses entering new host cells has been studied extensively, the route for viruses moving out of their original host cells is not well-understood, Rossmann said.

"These two papers concern that route and compare the differences between both pathways," he said.

The virus moves through compartments inside the cell called the endoplasmic reticulum and the trans-Golgi network. While immature, virus particles are incapable of fusing with cell membranes, preventing them from infecting their own host cells and ensuring their maturation. Once mature, however, the virus is able to fuse to cell membranes, a trait that enables virus particles to infect new host cells, Chen said.

"There are many membranes in this trans-Golgi network, so the immature virus is always surrounded by membranes," Chen said. "In fact, the environment of the secretory pathway is very similar to what the virus encounters while it enters and infects a new host cell. So the question is, why doesn't the virus fuse to membranes on the way out""

The researchers have examined the crucial role played by the changing acidity as the immature virus travels through the compartments.

"This change in acidity was already known, but its impact on the maturation process was not known until these new findings," Rossmann said.

As a virus particle matures along the pathway through the host cell, it changes the protein structure, or "conformation," in its outer shell.

Yu mimicked the trans-Golgi network environment in test tubes, enabling the researchers to study the virus's changing structure with increasing acidity.

The surface of each virus particle contains 180 copies of a component made of two linked proteins called precursor membrane protein and envelope protein.

The precursor membrane protein prevents the immature virus from fusing with membranes by covering an attachment site in the envelope protein. During maturation, an enzyme called furin snips the connection between the two proteins, eventually exposing the envelope protein site and enabling the virus to fuse with membranes.

Yu learned, however, that the precursor membrane protein remains in place until the virus is ready to exit the original host cell. The researchers used a technique called cryoelectron microscopy to gain a more detailed view of the virus.

"So, the precursor membrane protein is retained on the virus surface even after the enzyme detaches the two proteins," Chen said. "This is a critical step because the virus is ready to mature but still is incapable of fusing with membranes until after it exits its own cell."

The researchers also determined that the environment must be acidic before the enzyme will snip the two proteins, and they examined the structure to learn specifically why the increased acidity is needed.

Li used fruit fly cells to produce large quantities of the linked proteins so that researchers could study them with a method called X-ray crystallography. Using crystallography, the researchers were able to visualize and study the combined structure of the precursor membrane and envelope proteins.

"Having a better understanding of this structure will enable us to learn why the immature form does not fuse with membranes," Rossmann said. "Ultimately, researchers might want to find ways to treat or prevent viral infections, but in order to do that we first have to learn how viruses work, how they mature and initiate infection."

To produce the complex of the two proteins, Li first had to replace the insoluble "transmembrane region" of the protein with a soluble segment, a step essential for using the fruit fly cells to manufacture the proteins. He also had to mutate the protein to remove sites where furin normally attaches, preventing the proteins from being snipped apart.

The precursor membrane protein is about as wide as 50 nanometers, or billionths of a meter, and the envelope protein is about 3 nanometers, or nearly atomic-scale. A nanometer is about the size of 10 hydrogen atoms strung together.

The research has been funded primarily by the National Institutes of Health. Rossmann's and Chen's research laboratories are affiliated with Purdue's Markey Center for Structural Biology.

One of the papers was authored by Li, postdoctoral research associate Shee-Mei Lok, Yu, graduate student Ying Zhang, Kuhn, Chen and Rossmann. The other paper was authored by Yu, research scientist Wei Zhang, technician Heather A. Holdaway, Li, postdoctoral research associate Victor A. Kostyuchenko, electron microscopist Paul R. Chipman, Kuhn, Rossmann and Chen.

Future research may focus on determining the virus's changing structure in greater detail.

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

Further reports about: Dengue Maturation Membrane Nanometer Precursor Rossmann acidity fuse immature infect

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>