Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robert Weinberg: Research Can Begin to Rationalize Complex Process of the Development of Metastases

27.03.2008
"The process of tumor metastasis has until recently been one of bewildering complexity. However, one can now begin to rationalize this complex process in terms of a relatively small number of master control genes which normally operate during normal development and which are appropriated and exploited by cancer cells", Dr. Robert Weinberg, a pioneer in cancer research from the Whitehead Institute for Biomedical Research, Cambridge, USA, said in Berlin.

The reason for this is the discovery of transcription factors in the last few years. "Transcription factors are proteins that turn genes on and off and can act to program many of the traits of highly malignant cells", as described by Dr. Weinberg, who is also a Professor at the Massachusetts Institute of Technology (MIT).

He delivered the key note lecture at the opening of the International Conference on "Invasion and Metastasis" of the Max Delbrück Center for Molecular Medicine (MDC) in Berlin, Germany on Wednesday evening (March 26). He is most widely known for his discoveries of the first human oncogene - a gene that causes normal cells to form tumors - and the first tumor suppressor gene.

In 2007, almost 560,000 Americans and more than 1,8 million Europeans died of cancer, according to the American Cancer Society.

... more about:
»EMT »enable »epithelial »primary

"The vast majority (90 percent) of these patients were struck down by metastases, cancer cells that have disseminated and colonized in organs far from the primary tumor", Dr. Weinberg pointed out. "Only ten percent of cancer patients die of their primary tumors".

The majority of life-threatening cancers about 80 per cent, occur in epithelial tissue. Epithelial cells cover the outside of the body, skin cells, and line the inner organs such as breast glands, the colon, the prostrate, and blood and lymph vessels. But what exactly enables cancer cells to leave the primary tumor and "travel by the body's highways - the blood and the lymphatic vessels -", as Dr. Weinberg put it, to seek new sites where they may found new colonies?

Drastic change of the cell's traits

Recent research suggests that a drastic alteration of the primary cancer cells (called epithelial- mesenchymal transition or EMT) plays a crucial role in this complex biological process. "The EMT involves a profound change in the biological phenotype of cells in which they shed their epithelial traits together with their gene expression pattern and acquire mesenchymal ones instead", Dr. Weinberg explained.

Special epithelial markers, like E-cadherin and beta-Catenin, are depressed. These markers normally keep the epithelial cells tightly together. The mesenchymal state frees these cells to move about and to invade other tissues, and also makes them resistant to apoptosis, programmed cell death. "This pathological process is strikingly similar to the EMT normally occurring during embryogenesis and wound healing", said Weinberg.

EMT is an important program which enables carcinoma cells to become mobile and invasive. "Nonetheless, it is still unclear whether EMT underlies the malignant behavior of all carcinoma cells or whether alternative programs are activated to enable metastatic dissemination," Dr. Weinberg pointed out.

Many other questions still remain: Why do breast cancers typically metastasize in the brain, liver, bones, and lungs, prostrate cancers in the bones, and colon carcinomas in the liver? Why, after many years, do some micrometastases develop into macrometastases, which eventually lead to patient death? And, finally, why do some cancers not develop any metastases at all?

Altogether, about 160 scientists from Europe, Israel, Japan, the USA, Singapore, and Turkey participate in the conference which runs from March 26th through March 29th . The conference organizers are Prof. Walter Birchmeier and Dr. Ulrike Ziebold (both Max Delbrück Center for Molecular Medicine, MDC, Berlin-Buch) and Prof. Jürgen Behrens (University of Erlangen). Both Prof. Birchmeier and Prof. Behrens have published significant results about the formation of metastases during the past years. The conference is funded by the Deutsche Krebshilfe (German Cancer Research Foundation) and the Deutsche Forschungsgemeinschaft (DFG).

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Straße 10; 13125 Berlin; Germany
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/en/news
http://www.wi.mit.edu/research/faculty/weinberg.html

Further reports about: EMT enable epithelial primary

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>