Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Florida scientists develop a process to disrupt hepatitis C virion production

25.03.2008
Findings offer hope for new therapies

HCV is a significant human pathogen, infecting more than three percent of the world’s population. The incidence of infection in the United States has been estimated to be as high as 4 million cases.

In the March issue of the journal PLoS Pathogens, Timothy Tellinghuisen, an assistant professor in the Department of Infectology at Scripps Florida, and his colleagues describe how they used mutations of the viral NS5A phosphoprotein to disrupt virus particle production at an early stage of assembly. NS5A has long been proposed as a regulator of events in the HCV life cycle, but exactly how it orchestrates these events has been unclear.

“The interesting thing about this mutant is that while it triggers totally normal RNA replication, it causes severe defects in the output of infectious virus—in fact, it releases no infectious virus that we can detect,” says Tellinghuisen. “And though this discovery isn’t a cure for HCV, it is an important research tool that stops the assembly pathway.” Total disruption of the replication process would be a cure for the disease, he adds, and that’s the team’s long-term goal.

HCV infection is roughly five to seven times more prevalent than HIV, underscoring the pandemic nature of HCV infection. HCV occurs when blood from an infected person enters the body of someone who is not infected. Most new HCV infections are due to illegal drug injections and sharing needles. However, those who had blood transfusions prior to blood donor screening in 1991, healthcare workers who had needle stick accidents, and hemodialysis patients are also at risk for developing HCV infection. The virus predominantly infects the liver, and following many decades of virus reproduction serious disease such as hepatitis (liver inflammation), cirrhosis (liver scarring), and carcinoma (liver cancer) develop. Ultimately, HCV infection destroys the liver, resulting in death. Attempts at curing HCV infections with drug therapy have been only marginally successful.

Before more effective therapies can be developed, scientists need to understand, at the molecular level, the detailed mechanisms HCV uses to infect cells, replicate itself, assemble progeny virus, and exit the cell. Each of these processes could potentially be a target for a new drug to eliminate HCV infection. HCV, like all viruses, requires the normal cellular machinery for its replication and has developed strategies to utilize normal cell physiology for its own benefit (often to the detriment of the host).

The Tellinghuisen team, which includes Research Assistants Katie L. Foss and Jason Treadaway, has focused recent efforts on NS5A to understand the regulation of events used by the virus to assemble infectious copies of itself and exit the cell. NS5A is a three-domain protein, which means it is comprised of three compactly folded regions roughly 50 to 300 amino acids in length. The requirement of domains I and II for RNA replication is well documented. NS5A domain III, however, is not required for RNA replication, and the function of this region in the HCV life cycle is unknown.

Using standard molecular biology, the researchers removed from domain III of NS5A a coding sequence corresponding to roughly 15 amino acids. Then they generated a clone of the virus, transcribed the RNA from that clone, and purified the RNA. This RNA, which is directly infectious, was then transfected into a liver cell line where it produced all the HCV proteins that are encoded by that RNA genome.

“Those proteins assemble in the cell to make a structure called a replicase that then copies the viral RNA,” Tellinghuisen explains. “We measured that RNA accumulation and observed no defect in RNA replication, but found, surprisingly, that no infectious viral particles were released from the cells.” The team also found that no viral RNA nor nucleocapsid protein are released from cells, indicating that an early event in virus assembly had been affected.

Using genetic mapping and biochemical analyses, the authors were able to show that their deletion altered a phosphorylation signal controlling the switch from RNA replication to virus particle assembly. This signal was attributed to the activity of a cellular kinase that when inhibited by genetic or chemical means led to a reduction in infectious virus production without altering HCV RNA replication.

“These data provide the first evidence for a function of domain III of NS5A and implicate NS5A as an important regulator of the RNA replication and virion assembly of HCV,” Tellinghuisen says. “The ability to uncouple virus production from RNA replication may be useful in understanding HCV assembly and may become therapeutically important.”

Charles M. Rice, head of the Center for the Study of Hepatitis C at Rockefeller University, comments, “This is a spectacular advance linking a specific phosphorylation event by a cellular kinase to hepatitis C virus assembly. Remarkably, the target is a viral nonstructural protein, NS5A, and the data point to a pivotal role for this protein in regulating RNA amplification and infectious virus production. These new data make this multifunctional protein an even more attractive target for developing new anti-virals for treating hepatitis C.”

This project was funded by a Career Development Award from the National Institutes of Allergy and Infectious Diseases of the National Institutes of Health, and by the State of Florida.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Currently operating from temporary facilities in Jupiter, Scripps Florida will move to its permanent campus in 2009.

For information:

Keith McKeown
858-784-8134
kmckeown@scripps.edu

Keith McKeown | EurekAlert!
Further information:
http://www.scrpps.edu

Further reports about: Cellular HCV HCV infection Infection NS5A RNA Tellinghuisen Viral develop infect replication

More articles from Life Sciences:

nachricht Rising water temperatures could endanger the mating of many fish species
03.07.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Moss protein corrects genetic defects of other plants
03.07.2020 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>