Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly genetic disease prevented before birth in zebrafish

25.03.2008
Finding offers potential for helping humans

By injecting a customized "genetic patch" into early stage fish embryos, researchers at Washington University School of Medicine in St. Louis were able to correct a genetic mutation so the embryos developed normally.

The research could lead to the prevention of up to one-fifth of birth defects in humans caused by genetic mutations, according to the authors.

Erik C. Madsen, first author and an M.D./Ph.D. student in the Medical Scientist Training Program at Washington University School of Medicine, made the groundbreaking discovery using a zebrafish model of Menkes disease, a rare, inherited disorder of copper metabolism caused by a mutation in the human version of the ATP7A gene. Zebrafish are vertebrates that develop similarly to humans, and their transparency allows researchers to observe embryonic development.

... more about:
»Genetic »Madsen »Menkes »Mutation »Treatment »copper »morpholino

Children who have Menkes disease have seizures, extensive neurodegeneration in the gray matter of the brain, abnormal bone development and kinky, colorless hair. Most children with Menkes die before age 10, and treatment with copper is largely ineffective.

The research is published this month in the Proceedings of the National Academy of Sciences' advance online edition.

The development of organs in the fetus is nearly complete at a very early stage. By that time, the mutation causing Menkes disease has already affected brain and nerve development.

Madsen and Bryce Mendelsohn, also an M.D./Ph.D. student at the School of Medicine, wondered if they could prevent the Menkes-like disease in zebrafish by correcting genetic mutations that impair copper metabolism during the brief period in which organs develop. Both students work in the lab of Jonathan D. Gitlin, M.D., the Helene B. Roberson Professor of Pediatrics at the School of Medicine and director of Genetics and Genomic Medicine at St. Louis Children's Hospital.

The researchers used zebrafish with two different mutations in the ATP7A gene, resulting in a disease in the fish that has many of the same characteristics of the human Menkes disease. Madsen designed a specific therapy to correct each mutation with morpholinos, synthetic molecules that modify gene expression. The zebrafish embryos were injected with the customized therapy during the critical window of development, and the researchers found that the zebrafish hatched and grew without any discernable defects.

"This method of copper delivery suggests that the prevention of the neurodegenerative features in Menkes disease in children may be possible with therapeutic interventions that correct the genetic defect within a specific developmental window," Madsen said.

The genetic mutations Madsen and the researchers worked with are caused by splicing defects, or an interruption in genetic code. The morpholinos prevent that interruption by patching over the defect so the gene can generate its normal product.

"Consider the genetic code as a book, and someone has put in random letters or gibberish in the middle of the book," Madsen said. "To be able to read the book, you have to ignore the gibberish. If we can make cells ignore the gibberish, or the splicing defect, the fetus can develop normally."

Up to 20 percent of genetic diseases are caused by splicing defects, Madsen said, so this treatment method could potentially be used for many other genetic diseases.

"The idea is that we can modify the treatment to target a specific mutation and design molecules to alter gene function in the same way the morpholino oligonucleotides can," Gitlin said.

The work is an important step toward personalized medicine, which can tailor treatment to an individual's genetic makeup.

"Eventually we would like to know each person's genome sequence so we know what mutations each person has that may lead to disease," Gitlin said. "That way, you don't get a drug for cancer that works against any kind of cancer, you get a drug for the specific mutation that causes your cancer. That's what personalized medicine is all about."

Beth Miller | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Genetic Madsen Menkes Mutation Treatment copper morpholino

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>