Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deadly genetic disease prevented before birth in zebrafish

25.03.2008
Finding offers potential for helping humans

By injecting a customized "genetic patch" into early stage fish embryos, researchers at Washington University School of Medicine in St. Louis were able to correct a genetic mutation so the embryos developed normally.

The research could lead to the prevention of up to one-fifth of birth defects in humans caused by genetic mutations, according to the authors.

Erik C. Madsen, first author and an M.D./Ph.D. student in the Medical Scientist Training Program at Washington University School of Medicine, made the groundbreaking discovery using a zebrafish model of Menkes disease, a rare, inherited disorder of copper metabolism caused by a mutation in the human version of the ATP7A gene. Zebrafish are vertebrates that develop similarly to humans, and their transparency allows researchers to observe embryonic development.

... more about:
»Genetic »Madsen »Menkes »Mutation »Treatment »copper »morpholino

Children who have Menkes disease have seizures, extensive neurodegeneration in the gray matter of the brain, abnormal bone development and kinky, colorless hair. Most children with Menkes die before age 10, and treatment with copper is largely ineffective.

The research is published this month in the Proceedings of the National Academy of Sciences' advance online edition.

The development of organs in the fetus is nearly complete at a very early stage. By that time, the mutation causing Menkes disease has already affected brain and nerve development.

Madsen and Bryce Mendelsohn, also an M.D./Ph.D. student at the School of Medicine, wondered if they could prevent the Menkes-like disease in zebrafish by correcting genetic mutations that impair copper metabolism during the brief period in which organs develop. Both students work in the lab of Jonathan D. Gitlin, M.D., the Helene B. Roberson Professor of Pediatrics at the School of Medicine and director of Genetics and Genomic Medicine at St. Louis Children's Hospital.

The researchers used zebrafish with two different mutations in the ATP7A gene, resulting in a disease in the fish that has many of the same characteristics of the human Menkes disease. Madsen designed a specific therapy to correct each mutation with morpholinos, synthetic molecules that modify gene expression. The zebrafish embryos were injected with the customized therapy during the critical window of development, and the researchers found that the zebrafish hatched and grew without any discernable defects.

"This method of copper delivery suggests that the prevention of the neurodegenerative features in Menkes disease in children may be possible with therapeutic interventions that correct the genetic defect within a specific developmental window," Madsen said.

The genetic mutations Madsen and the researchers worked with are caused by splicing defects, or an interruption in genetic code. The morpholinos prevent that interruption by patching over the defect so the gene can generate its normal product.

"Consider the genetic code as a book, and someone has put in random letters or gibberish in the middle of the book," Madsen said. "To be able to read the book, you have to ignore the gibberish. If we can make cells ignore the gibberish, or the splicing defect, the fetus can develop normally."

Up to 20 percent of genetic diseases are caused by splicing defects, Madsen said, so this treatment method could potentially be used for many other genetic diseases.

"The idea is that we can modify the treatment to target a specific mutation and design molecules to alter gene function in the same way the morpholino oligonucleotides can," Gitlin said.

The work is an important step toward personalized medicine, which can tailor treatment to an individual's genetic makeup.

"Eventually we would like to know each person's genome sequence so we know what mutations each person has that may lead to disease," Gitlin said. "That way, you don't get a drug for cancer that works against any kind of cancer, you get a drug for the specific mutation that causes your cancer. That's what personalized medicine is all about."

Beth Miller | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Genetic Madsen Menkes Mutation Treatment copper morpholino

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>