Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NC State Gene 'Knockout' Floors Tobacco Carcinogen

20.03.2008
In large-scale field trials, scientists from North Carolina State University have shown that silencing a specific gene in burley tobacco plants significantly reduces harmful carcinogens in cured tobacco leaves.

The finding could lead to tobacco products – especially smokeless products – with reduced amounts of cancer-causing agents.

NC State's Dr. Ralph Dewey, professor of crop science, and Dr. Ramsey Lewis, assistant professor of crop science, teamed with colleagues from the University of Kentucky to knock out a gene known to turn nicotine into nornicotine. Nornicotine is a precursor to the carcinogen N-nitrosonornicotine (NNN). Varying percentages of nicotine are turned into nornicotine while the plant ages; nornicotine converts to NNN as the tobacco is cured, processed and stored.

The field tests in Kentucky, Virginia and North Carolina compared cured burley tobacco plants with the troublesome gene silenced and "control" plant lines with normal levels of gene expression. The researchers found a six-fold decrease in carcinogenic NNN in the genetically modified tobacco plants, as well as a 50 percent overall reduction in the class of harmful compounds called TSNAs, or tobacco-specific nitrosamines. TSNAs are reported to be among the most important tobacco-related compounds implicated in various cancers in laboratory experiments, Lewis said.

... more about:
»Lewis »burley

The research results were published online in Plant Biotechnology Journal.

Lewis and Dewey stress that the best way for people to avoid the risks associated with tobacco use is to avoid using tobacco products. But their findings show that targeted gene silencing can work as well in the field as it does on the lab bench.

"Creating a tobacco plant with fewer or no harmful compounds may also help with tobacco plants that are being used to create pharmaceuticals or other high-value products," Dewey said.

To get initial lines of plants with the troublesome gene silenced, the NC State researchers used a technique called RNA interference in which genetic engineering was used to introduce a gene that inhibits the demethylase gene function into the tobacco plant.

Dewey and Lewis have since developed tobacco lines with the same effect without using genetic engineering. They randomly inserted chemical changes, or mutations, into the tobacco genome of burley tobacco plants. They then searched for plants in which the nicotine demethylase gene was permanently impaired. The researchers are currently working to transfer this mutation to widely used tobacco varieties.

Dewey and Lewis add that nothing else in the plant changed – growth or resistance to insects or disease, for example – after they knocked out this specific gene.

While Lewis believes that varieties of burley tobacco with a silenced demethylase gene will exist within the next few years, the NC State researchers say burley tobacco has a number of other targets for their gene silencing method.

The research is sponsored by Philip Morris USA.

Dr. Ralph Dewey | EurekAlert!
Further information:
http://www.ncsu.edu

Further reports about: Lewis burley

More articles from Life Sciences:

nachricht Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells
21.09.2018 | NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen

nachricht A one-way street for salt
21.09.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>