Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how stealthy HIV protein gets into cells

19.03.2008
Scientists have known for more than a decade that a protein associated with the HIV virus is good at crossing cell membranes, but they didn’t know how it worked. A multidisciplinary team from the University of Illinois has solved the mystery, and their findings could improve the design of therapeutic agents that cross a variety of membrane types.

A paper describing their findings appears this month in Angewandte Chemie.

The TAT protein transduction domain of the HIV virus has some remarkable properties. First, it is a tiny part of the overall TAT protein, containing only 11 amino acids. Second, and more important, it has an uncanny knack for slipping across membranes, those lipid-rich bags that form the boundaries of cells and cellular components and are designed to keep things out.

“TAT is extremely good at getting through cell membranes,” said materials science and engineering professor Gerard Wong, who led the new study. “You can attach TAT to almost anything and it will drag it across the membrane. It can work for virtually all tissues, including the brain.”

... more about:
»HIV »Membrane »TaT »Wong »acid »amino »arginine »pores

The TAT protein’s versatility makes it desirable as a drug-delivery device. It is already being used for gene therapy. (TAT is not involved in transmitting the HIV virus; it only aids the passage of other materials across the membranes of infected cells.)

Because it has so many potential uses, scientists have long endeavored to understand the mechanism that allows the TAT protein to work. But their efforts have been stymied by some baffling observations.

Six of its 11 residues are arginine, a positively charged amino acid that gives the protein its activity.

Most membranes are composed of a double layer of neutral, water-repellent lipids on their interiors, with hydrophilic (water-loving) “head groups” on their internal and external surfaces. The head groups generally carry a mildly negative charge, Wong said. Since opposites attract, it made sense to the researchers that the positively charged TAT protein would attract the negatively charged head groups on the surface of the membranes. This attraction could deform the membrane in a way that opened up a pathway through it.

If a short, positively charged protein was all that was needed for TAT to work, the researchers thought, then any positively charged amino acid should do the trick. But when they replaced the arginine in the protein with other positively charged amino acids, it lost its function. Clearly, a positive charge was not enough to make it work.

To get a better picture of the interaction of TAT with a variety of membranes, the researchers turned to confocal microscopy and synchrotron x-ray scattering (SAXS). Although sometimes used in biological studies, SAXS is more common to the fields of physics or materials science, where the pattern of X-ray scattering can reveal how atomic and nano scale materials are structured.

The researchers found that adding the TAT protein to a membrane completely altered its SAXS spectrum, a sign that the membrane conformation had changed. After analyzing the spectrum, the researchers found that TAT had made the membranes porous.

“The TAT sequence has completely reconstructed (the membrane) and made it into something that looks a little bit like a sponge with lots of holes in it,” Wong said.

Something about the TAT protein had induced a “saddle splay curvature” in the membrane. This shape resembles a saddle (like that of a Pringles potato chip), giving the openings, or pores, a bi-directional arc like that seen inside a doughnut hole.

The newly formed pores in the membrane were 6 nanometers wide, large enough to allow fairly sizeable proteins or other molecules to slip through. The pores would also make it easier for other biological processes to bring materials through the membrane.

Further analysis showed that the arginine was interacting with the head groups on the membrane lipids in a way that caused the membrane to buckle in two different directions, bringing on the saddle splay curvature that allowed the pores to form.

When another positively charged amino acid, lysine, was used instead of arginine, the protein bent the membrane in one direction only, forming a shape more like a closed cylinder that would not allow materials to pass through.

These findings will aid researchers hoping to enhance the properties of the TAT protein that make it a good vehicle for transporting therapeutic molecules into cells, Wong said.

Wong also is a professor of physics and of bioengineering.

Diana Yates | EurekAlert!
Further information:
http://www.uiuc.edu

Further reports about: HIV Membrane TaT Wong acid amino arginine pores

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>