Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Like sweets? You're more like a fruit fly than you think...

19.03.2008
Similarities highlight environment's role in shaping evolution of taste preferences

According to researchers at the Monell Center, fruit flies are more like humans in their responses to many sweet tastes than are almost any other species.

The diverse range of molecules that humans experience as sweet do not necessarily taste sweet to other species. For example, aspartame, a sweetener used by humans, does not taste sweet to rats and mice.

However, fruit flies respond positively to most sweeteners preferred by humans, including sweeteners not perceived as sweet by some species of monkeys.

... more about:
»TASTE »preference »receptor »responses »sweetener

The findings, published in the current issue of the journal Chemical Senses, demonstrate the critical role of environment in shaping the genetic basis of taste preferences and feeding behavior.

“Humans and flies have similar taste responses because they share similar environments and ecological niches, not because their sweet receptors are similar genetically,” notes senior author Paul A.S. Breslin, PhD, a Monell sensory geneticist. “Both are African species, both are omnivorous, and both historically are primarily fruit eaters.”

To compare how molecular structure is related to sweet taste perception in humans and flies, the Monell researchers evaluated how fruit flies respond to 21 nutritive and nonnutritive compounds of varying molecular structure, all of which taste sweet to humans.

Breslin and lead author Beth Gordesky-Gold, PhD, used two behavioral tests to evaluate the flies’ responses to the various sweeteners.

The taste reactivity test measures whether a fly extends its feeding tube, or ‘proboscis,’ to consume a given sweetener. In addition, a two-choice preference test evaluates the flies’ responses to a sweetener by measuring whether they consume it in preference to a control solution (usually water).

The Monell researchers found that fruit flies and humans both respond positively to the same broad range of sweet-tasting molecules.

“The similarity between human and fly responses to sweeteners is astounding, especially in light of the differences in their taste receptors,” notes Gordesky-Gold, a Drosophila (fruit fly) geneticist at Monell.

Sweet receptors belong to a large family of receptors known as G-protein coupled receptors (GPCRs), which are involved in biological processes throughout the body. Human and fly sweet taste GPCRs are presumed to have markedly different structures, an assumption that is based on differences in the genes that code for them.

Since substances will only taste sweet if they are able to bind to and activate a receptor, these two structurally different types of sweet receptors must have similar ‘binding regions’ that fit the same range of molecular shapes.

“That genes could be so divergent in sequence and so similar in physiology and function is truly striking,” says Breslin. “This is a wonderful example of convergent evolution in perceptual behavior, where evolution has taken two different routes to address pressures imposed by shared environment and nutrition.”

Future work will be directed towards modeling how these two structurally different sweet receptors could have highly overlapping sweetener affinities. Such knowledge will increase understanding of how molecules bind to GPCRs, which are targets for many pharmaceutical drugs.

Leslie Stein | EurekAlert!
Further information:
http://www.monell.org

Further reports about: TASTE preference receptor responses sweetener

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>