Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MDC Researchers Reconstruct Jumping Gene - New Tool for Elucidating the Function of Genes

17.03.2008
They can be found in plants, animals and even in humans – inactive remains of jumping genes, transposons. Researchers are striving to develop active transposons from these remains, using them as tools to decode gene function.

At the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch, Germany, researchers have now succeeded in reconstructing the first active transposon of the Harbinger transposon superfamily.

In the laboratory, the artificial transposon developed by Dr. Ludivine Sinzelle, Dr. Zsuzsanna Izsvák, and Dr. Zoltán Ivics also shows cut-and-paste transposition in human cells and promises to serve as a useful experimental system for investigating human gene function. The findings of the MDC researchers have just been published online in the Proceedings of the National Academy of Sciences (PNAS 10.1073/pnas.0707746105)*.

Transposons comprise about half of the human genome. “They are molecular parasites, similar to fleas, only that they are in the genome of the host and not on its back,” Dr. Zoltán Ivics explained. They jump, move, and proliferate through the host, without whom they could not survive. In most cases, transposons do not fulfill any function in the human genome. “However, not all are superfluous,” Dr. Ivics went on to say. “More than 100 active genes, including some associated with the immune system, have been recognized as probably derived from transposons.”

... more about:
»Active »Genome »Ivics »Transposon »function

To reconstruct an active transposon, Dr. Ivics’ team compared the DNA of various inactive Harbinger transposons, one of the largest superfamilies of transposons. Based on these results, they developed an artificial jumping gene. “We were very lucky,” Dr. Ivics said. “The very first experiment was successful.”

New tool for basic research
In the cell lab, the MDC researchers inserted the transposon into the human cell by means of a gene shuttle. Via a cut-and-paste mechanism, the artificial transposon excises itself from its transport vehicle and inserts itself into the genome of the cell. If the transposon jumps into an important gene and deactivates it, it may impair important processes in the cell. As a result, researchers can draw conclusions about the function of the gene.

Moreover, in the course of evolution, transposons have been responsible for the emergence of new genes. Thus, through computerized gene analysis, Dr. Ivics’ research team has discovered two new elements related to the Harbinger transposon. In a new project, Dr. Ivics aims to elucidate just what role these play in the human body.

Over the long term, scientists hope to use such transposons in gene therapy as well. With the aid of a transposon, an intact copy of a gene could be incorporated into the genome of a patient to repair a defective gene. “But until this can happen, there is still a lot to be done,” Dr. Ivics pointed out. “The new gene should not just jump in anywhere.”

Barbara Bachtler | alfa
Further information:
http://www.pnas.org/
http://www.mdc-berlin.de

Further reports about: Active Genome Ivics Transposon function

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>