Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein deficiency leads to faster fat burning in mice

14.03.2008
Researchers have developed a new, lean mouse with characteristics suggesting that someday, using medication to manipulate a specific protein in humans could emerge as a strategy to treat obesity and disorders associated with excess weight, such as diabetes and metabolic syndrome.

To create the hybrid, scientists crossed mice deficient in protein kinase C beta (PKCB) with the C57 black mouse, a common animal used in research for studying diabetes and obesity.

“These animals can eat more than normal. And they have less fat than normal. That’s a dream come true if it can be extended to human beings,” said Kamal Mehta, senior author of the study and a professor of molecular and cellular biochemistry at Ohio State University.

He noted, however, that an appropriate therapy for humans would take years to develop.

At first glance, compared to mice with no deficiency, these new hybrid mice were smaller and leaner. And when the researchers looked under their skin, they saw the mice had less fat distribution in the skin itself and less fat tissue overall. They also had less fat in their livers and muscles. The fat cells they did have were smaller than fat cells in other mice.

And despite the propensity for obesity from their original genes, the new mice lost weight while eating up to 30 percent more food than other mice. This means their lower weight was not caused by less eating, suggesting the protein deficiency corrected for the obesity tendencies by increasing the hybrids’ ability to burn fat, said Mehta, an investigator in Ohio State’s Davis Heart and Lung Research Institute.

The research is published in a recent issue of the Journal of Biological Chemistry.

Based on his previous research on the role of PKCB in metabolism, Mehta expected a deficiency of the protein to affect how the body processes triglycerides, or fat stored in body tissue.

“The bottom line is we were the first to show that this deficiency leads to a lean animal. The next question is why,” Mehta said. “In order to answer why, we need to know which genes are changed in these knockout animals.”

The most prominent effect the scientists have been able to identify so far relates to the mitochondria, the principal energy source of cells. Mehta said the new hybrid mice have more mitochondria within their cells than do normal mice, and that the added energy source allows them to convert fatty acids into energy.

“We have shown to some extent that there is increased fatty acid oxidation. We found that they use more oxygen, so that means they are using this oxygen to metabolize fat, convert it into carbon dioxide and expel it when they breathe,” said Madhu Mehta, a clinical consultant and co-author on the study and assistant professor of internal medicine at Ohio State.

The research group is testing this finding with an additional experiment, introducing the PKCB deficiency to animals with a lower production of mitochondria to see if the level of mitochondria increases when the protein is not present.

More work also needs to be done to determine whether the protein could be deficient in just certain types of cells to produce the same effect – for example, by eliminating the protein from only liver cells or fat tissue cells rather than throughout the body. Under current circumstances, the deficiency is present in the entire mouse genome.

“So we need to find which specific tissue needs the deficiency. Once we know which tissue is crucial for this, we can target that,” Kamal Mehta said. “The whole idea is to be able to develop a drug that would safely create this deficiency in humans.”

Mehta also is leading a study testing the effect of PKCB deficiency on diabetes in particular, examining whether the disease can be prevented by the elimination of this protein. An excess of triglycerides in tissue can lead to insulin resistance, a hallmark of diabetes. Because the protein relates to how the body burns triglycerides, Mehta believes the deficiency also could play a role in preventing the disease from developing.

The deficiency does not appear to pose any health problems. The mice with the deficiency lived a normal lifespan and experienced no premature deaths.

It remains unknown whether the deficiency currently exists naturally in humans. “Genetic testing of lean people could help answer that question,” Mehta said.

This research was supported by the National Institutes of Health.

Co-authors on the study were Rishipal Bansode, Wei Huang and Sanjit Roy of the Department of Molecular and Cellular Biochemistry and the Davis Heart and Lung Research Institute.

Kamal Mehta | EurekAlert!
Further information:
http://www.osu.edu

Further reports about: Diabetes HDL-cholesterol Mehta PKCB Tissue deficiency mitochondria

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>