Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Navigational aid for growing nerve cells

13.03.2008
A protein governs the growth of nerve cells and guides them to their target

The human brain consists of a hundred billion nerve cells, each of which makes thousands of connections with other cells. In all of this, how do nerve fibers know where to grow and when to establish a contact?

Scientists at the Max Planck Institute of Neurobiology in Martinsried now found a protein that guides growing nerve cells in the eye of the fruit fly. In addition, the protein also acts as spacer between neighboring nerve cells. Similar mechanisms could also play a role in the development of the vertebrate nervous system.

Finding your way in a large and unknown city without the aid of a navigational device or a fellow passenger is tough: each intersection requires a new decision on the right way to go, while at the same time dozens of traffic rules need to be observed and collisions to be omitted.

... more about:
»AID »Axon »Development »Gogo »Planck »medulla »nervous system

In a very similar situation are young nerve cells, when they try to find their way in their "megacity", the brain. In a vast tangle of other cells, growing nerve cells have to decide at numerous points in which direction to continue in order to find the cell they need to contact. To make this task even more difficult, thousands of other nerve cells have the same aim and project their cell extensions (axons) towards their partner cells. Unwanted collisions between these cells could thus quickly lead to a "traffic jam" with severe consequences: functional impairment is often the result when a nerve cell is unable to contact its partner cell.

What guides a nerve cell to its target?

In order to answer this question, scientists of the Max Planck Institute of Neurobiology took a closer look at the eye development of the fruit fly Drosophila. The eye of the fruit fly is especially suited for such research: It is much simpler than that of a vertebrate and thus easier to study. At the same time, it is complex enough to elucidate the general mechanisms responsible for neuronal path-finding. Another benefit of choosing the fruit fly is that a wide variety of genetic tools are available. This enables scientists for example to alter genes specific to the development of the eye while all other nerves remain untouched. And this is exactly what the neurobiologists have done: they specifically disabled a gene in the fly eye and found its product, the protein Gogo (Golden Goal), which not only functions as a navigational aid for growing nerve cells, but also maintains the spacing between neighboring cells.

Truly a complex eye

The compound eye of the fruit fly consists of 800 independent photoreception units, each of which contains eight photoreceptor cells. These specialized nerve cells convert light into electrical signals which are transported to the brain. The axon of each receptor cell grows during the eye's development towards the next site of neuronal processing, the lamina. Parallel growth of the eight axons results in the formation of the visual rod in the center of each photoreceptor unit. Reaching the lamina, two of the eight axons continue to grow to the next brain layer, the medulla. On their way to the medulla, the visual pathways cross each other, resulting in a rotation of 180° of the original picture. The Max Planck scientists now showed how nerve cells find their correct partner cells in this complex growth pattern: The protein Gogo is located in the membrane right at the tip of the growing axon. In the absence of Gogo due to genetic manipulation, cells are unable to maintain their parallel growth - they collide and clump together and the visual rod cannot form. In addition, the two axons that continue to grow towards the medulla are unable to find their partner cell - they stray before or overshoot their correct target layer (Figure 1). It is thus clear: the fly eye cannot develop correctly without Gogo.

Navigational aid also for other nerve systems?
"Based on the genetic and cell biological evidences, we assume that Gogo is a receptor protein, whose binding to its signal molecules leads to an attraction or repulsion of the axons", explains Takashi Suzuki who supervised the study. Other signal molecules probably enable Gogo to aid the nerve cell to its correct partner cell in the medulla. It is likely that other receptor proteins and their signal molecules also play a role in guiding the axons; however, there are probably less than ten, assumes Suzuki. "If we understand the combination and function of these molecules we hope to understand the development of the whole system." Many of the genes found in the fruit fly play also a role in the development of nervous systems in other organisms. The insights into the development of the eye of the fruit fly are therefore also important to understand our own nervous system.

Original publication:

Tatiana Tomasi, Satoko Hakeda-Suzuki, Stephan Ohler, Alexander Schleiffer, Takashi Suzuki
The transmembrane protein Golden Goal regulates R8 photoreceptor axon-axon and axon-target interactions

Neuron, 13 March 2008

Contact
Dr. Stefanie Merker
Max Planck Institute of Neurobiology
Phone: +49 89 8578-3414
Fax: +49 89 89950-022
E-mail: Merker@neuro.mpg.de

Dr. Stefanie Merker | idw
Further information:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/english/junior/axguide/index.html

Further reports about: AID Axon Development Gogo Planck medulla nervous system

More articles from Life Sciences:

nachricht New gene potentially involved in metastasis identified
26.03.2019 | Institute of Science and Technology Austria

nachricht Decoding the genomes of duckweeds: low mutation rates contribute to low genetic diversity
26.03.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>