Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Navigational aid for growing nerve cells

13.03.2008
A protein governs the growth of nerve cells and guides them to their target

The human brain consists of a hundred billion nerve cells, each of which makes thousands of connections with other cells. In all of this, how do nerve fibers know where to grow and when to establish a contact?

Scientists at the Max Planck Institute of Neurobiology in Martinsried now found a protein that guides growing nerve cells in the eye of the fruit fly. In addition, the protein also acts as spacer between neighboring nerve cells. Similar mechanisms could also play a role in the development of the vertebrate nervous system.

Finding your way in a large and unknown city without the aid of a navigational device or a fellow passenger is tough: each intersection requires a new decision on the right way to go, while at the same time dozens of traffic rules need to be observed and collisions to be omitted.

... more about:
»AID »Axon »Development »Gogo »Planck »medulla »nervous system

In a very similar situation are young nerve cells, when they try to find their way in their "megacity", the brain. In a vast tangle of other cells, growing nerve cells have to decide at numerous points in which direction to continue in order to find the cell they need to contact. To make this task even more difficult, thousands of other nerve cells have the same aim and project their cell extensions (axons) towards their partner cells. Unwanted collisions between these cells could thus quickly lead to a "traffic jam" with severe consequences: functional impairment is often the result when a nerve cell is unable to contact its partner cell.

What guides a nerve cell to its target?

In order to answer this question, scientists of the Max Planck Institute of Neurobiology took a closer look at the eye development of the fruit fly Drosophila. The eye of the fruit fly is especially suited for such research: It is much simpler than that of a vertebrate and thus easier to study. At the same time, it is complex enough to elucidate the general mechanisms responsible for neuronal path-finding. Another benefit of choosing the fruit fly is that a wide variety of genetic tools are available. This enables scientists for example to alter genes specific to the development of the eye while all other nerves remain untouched. And this is exactly what the neurobiologists have done: they specifically disabled a gene in the fly eye and found its product, the protein Gogo (Golden Goal), which not only functions as a navigational aid for growing nerve cells, but also maintains the spacing between neighboring cells.

Truly a complex eye

The compound eye of the fruit fly consists of 800 independent photoreception units, each of which contains eight photoreceptor cells. These specialized nerve cells convert light into electrical signals which are transported to the brain. The axon of each receptor cell grows during the eye's development towards the next site of neuronal processing, the lamina. Parallel growth of the eight axons results in the formation of the visual rod in the center of each photoreceptor unit. Reaching the lamina, two of the eight axons continue to grow to the next brain layer, the medulla. On their way to the medulla, the visual pathways cross each other, resulting in a rotation of 180° of the original picture. The Max Planck scientists now showed how nerve cells find their correct partner cells in this complex growth pattern: The protein Gogo is located in the membrane right at the tip of the growing axon. In the absence of Gogo due to genetic manipulation, cells are unable to maintain their parallel growth - they collide and clump together and the visual rod cannot form. In addition, the two axons that continue to grow towards the medulla are unable to find their partner cell - they stray before or overshoot their correct target layer (Figure 1). It is thus clear: the fly eye cannot develop correctly without Gogo.

Navigational aid also for other nerve systems?
"Based on the genetic and cell biological evidences, we assume that Gogo is a receptor protein, whose binding to its signal molecules leads to an attraction or repulsion of the axons", explains Takashi Suzuki who supervised the study. Other signal molecules probably enable Gogo to aid the nerve cell to its correct partner cell in the medulla. It is likely that other receptor proteins and their signal molecules also play a role in guiding the axons; however, there are probably less than ten, assumes Suzuki. "If we understand the combination and function of these molecules we hope to understand the development of the whole system." Many of the genes found in the fruit fly play also a role in the development of nervous systems in other organisms. The insights into the development of the eye of the fruit fly are therefore also important to understand our own nervous system.

Original publication:

Tatiana Tomasi, Satoko Hakeda-Suzuki, Stephan Ohler, Alexander Schleiffer, Takashi Suzuki
The transmembrane protein Golden Goal regulates R8 photoreceptor axon-axon and axon-target interactions

Neuron, 13 March 2008

Contact
Dr. Stefanie Merker
Max Planck Institute of Neurobiology
Phone: +49 89 8578-3414
Fax: +49 89 89950-022
E-mail: Merker@neuro.mpg.de

Dr. Stefanie Merker | idw
Further information:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/english/junior/axguide/index.html

Further reports about: AID Axon Development Gogo Planck medulla nervous system

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>