Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model Identifies Targets for Eradication of Malaria and Rejects Re-Emergence Scenarios in Industrialised Countries

12.03.2008
Scientists at the Instituto Gulbenkian de Ciência (IGC), in Portugal, have shown that Malaria eradication in Africa is sustainable, and any re-emergence of malaria in industrialized nations is highly unlikely. Working with colleagues in Kenya, the IGC researchers created a mathematical model of malaria transmission throughout sub-Saharan Africa, published in this week’s PLoS ONE.

After several exposures to malaria, humans develop clinical immunity to the disease. In this state, they no longer have symptoms of malaria, but are nevertheless capable of transmitting the disease to others. In regions where malaria is endemic, many people have developed clinical immunity, and this has a large effect on how the disease spreads, that is, on its epidemiology.

Gabriela Gomes and her team at the Theoretical Epidemiology group developed a mathematical model which, for the first time, estimates the significance of asymptomatic infections in malaria transmission when looking at the distribution of the disease in different populations. They applied their model to data from hospital admissions of children with malaria, provided by researchers working in eight different regions in sub-Saharan Africa, where malaria is endemic.

The model shows that, contrary to what was previously thought, in regions of moderate transmission there is a threshold for malaria eradication, separating endemic and malaria-free states. Any intervention success depends critically on reducing occurrence of disease below this threshold, which the model predicts to be possible in areas of moderate transmission, which is the case for most of Africa.

... more about:
»Disease »Malaria »Transmission »endemic

Industrialised nations sit well below this threshold, in the malaria-free state, since the number of clinically immune people is extremely low, making any re-emergence of malaria in these countries highly improbable.

Ricardo Águas, first author of the paper, says, “This is a very powerful model, since it should allow us to determine quantifiable targets for reducing transmission of malaria (by providing mosquito nets, for example) and for fighting the disease (through mass- handing out of anti-malaria drugs), for a specific region.”

Gabriela Gomes added, “Huge efforts are being put into fighting malaria in developing countries. Our model presents a very optimistic outlook for eradicating the disease in areas where it is moderately endemic, contrary to current thinking. We are now looking for research partners who may provide us with more clinical data, from more regions in Africa, which we could use to strengthen our model, and feed into effective eradication programmes.”

Contact:
Gabriela Gomes
Email: ggomes@igc.gulbenkian.pt
Citation: Águas R, White LJ, Snow RW, Gomes MGM (2008) Prospects for Malaria Eradication in Sub-Saharan Africa. PLoS ONE 3(3): e1767. doi:10.1371/journal.pone.0001767

Rebecca Walton | alfa
Further information:
http://www.plosone.org/doi/pone.0001767

Further reports about: Disease Malaria Transmission endemic

More articles from Life Sciences:

nachricht Structure of a mitochondrial ATP synthase
19.11.2019 | Science For Life Laboratory

nachricht Mantis shrimp vs. disco clams: Colorful sea creatures do more than dazzle
19.11.2019 | University of Colorado at Boulder

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

How LISA pathfinder detected dozens of 'comet crumbs'

19.11.2019 | Physics and Astronomy

Trash talk hurts, even when it comes from a robot

19.11.2019 | Social Sciences

The evolution and genomic basis of beetle diversity

19.11.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>