Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model Identifies Targets for Eradication of Malaria and Rejects Re-Emergence Scenarios in Industrialised Countries

12.03.2008
Scientists at the Instituto Gulbenkian de Ciência (IGC), in Portugal, have shown that Malaria eradication in Africa is sustainable, and any re-emergence of malaria in industrialized nations is highly unlikely. Working with colleagues in Kenya, the IGC researchers created a mathematical model of malaria transmission throughout sub-Saharan Africa, published in this week’s PLoS ONE.

After several exposures to malaria, humans develop clinical immunity to the disease. In this state, they no longer have symptoms of malaria, but are nevertheless capable of transmitting the disease to others. In regions where malaria is endemic, many people have developed clinical immunity, and this has a large effect on how the disease spreads, that is, on its epidemiology.

Gabriela Gomes and her team at the Theoretical Epidemiology group developed a mathematical model which, for the first time, estimates the significance of asymptomatic infections in malaria transmission when looking at the distribution of the disease in different populations. They applied their model to data from hospital admissions of children with malaria, provided by researchers working in eight different regions in sub-Saharan Africa, where malaria is endemic.

The model shows that, contrary to what was previously thought, in regions of moderate transmission there is a threshold for malaria eradication, separating endemic and malaria-free states. Any intervention success depends critically on reducing occurrence of disease below this threshold, which the model predicts to be possible in areas of moderate transmission, which is the case for most of Africa.

... more about:
»Disease »Malaria »Transmission »endemic

Industrialised nations sit well below this threshold, in the malaria-free state, since the number of clinically immune people is extremely low, making any re-emergence of malaria in these countries highly improbable.

Ricardo Águas, first author of the paper, says, “This is a very powerful model, since it should allow us to determine quantifiable targets for reducing transmission of malaria (by providing mosquito nets, for example) and for fighting the disease (through mass- handing out of anti-malaria drugs), for a specific region.”

Gabriela Gomes added, “Huge efforts are being put into fighting malaria in developing countries. Our model presents a very optimistic outlook for eradicating the disease in areas where it is moderately endemic, contrary to current thinking. We are now looking for research partners who may provide us with more clinical data, from more regions in Africa, which we could use to strengthen our model, and feed into effective eradication programmes.”

Contact:
Gabriela Gomes
Email: ggomes@igc.gulbenkian.pt
Citation: Águas R, White LJ, Snow RW, Gomes MGM (2008) Prospects for Malaria Eradication in Sub-Saharan Africa. PLoS ONE 3(3): e1767. doi:10.1371/journal.pone.0001767

Rebecca Walton | alfa
Further information:
http://www.plosone.org/doi/pone.0001767

Further reports about: Disease Malaria Transmission endemic

More articles from Life Sciences:

nachricht Exciting Plant Vacuoles
14.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht A microscopic topographic map of cellular function
13.06.2019 | University of Missouri-Columbia

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

Im Focus: Cost-effective and individualized advanced electronic packaging in small batches now available

Fraunhofer IZM is joining the EUROPRACTICE IC Service platform. Together, the partners are making fan-out wafer level packaging (FOWLP) for electronic devices available and affordable even in small batches – and thus of interest to research institutes, universities, and SMEs. Costs can be significantly reduced by up to ten customers implementing individual fan-out wafer level packaging for their ICs or other components on a multi-project wafer. The target group includes any organization that does not produce in large quantities, but requires prototypes.

Research always means trying things out and daring to do new things. Research institutes, universities, and SMEs do not produce in large batches, but rather...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Concert of magnetic moments

14.06.2019 | Information Technology

Materials informatics reveals new class of super-hard alloys

14.06.2019 | Materials Sciences

New imaging modality targets cholesterol in arterial plaque

14.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>