Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Model Identifies Targets for Eradication of Malaria and Rejects Re-Emergence Scenarios in Industrialised Countries

12.03.2008
Scientists at the Instituto Gulbenkian de Ciência (IGC), in Portugal, have shown that Malaria eradication in Africa is sustainable, and any re-emergence of malaria in industrialized nations is highly unlikely. Working with colleagues in Kenya, the IGC researchers created a mathematical model of malaria transmission throughout sub-Saharan Africa, published in this week’s PLoS ONE.

After several exposures to malaria, humans develop clinical immunity to the disease. In this state, they no longer have symptoms of malaria, but are nevertheless capable of transmitting the disease to others. In regions where malaria is endemic, many people have developed clinical immunity, and this has a large effect on how the disease spreads, that is, on its epidemiology.

Gabriela Gomes and her team at the Theoretical Epidemiology group developed a mathematical model which, for the first time, estimates the significance of asymptomatic infections in malaria transmission when looking at the distribution of the disease in different populations. They applied their model to data from hospital admissions of children with malaria, provided by researchers working in eight different regions in sub-Saharan Africa, where malaria is endemic.

The model shows that, contrary to what was previously thought, in regions of moderate transmission there is a threshold for malaria eradication, separating endemic and malaria-free states. Any intervention success depends critically on reducing occurrence of disease below this threshold, which the model predicts to be possible in areas of moderate transmission, which is the case for most of Africa.

... more about:
»Disease »Malaria »Transmission »endemic

Industrialised nations sit well below this threshold, in the malaria-free state, since the number of clinically immune people is extremely low, making any re-emergence of malaria in these countries highly improbable.

Ricardo Águas, first author of the paper, says, “This is a very powerful model, since it should allow us to determine quantifiable targets for reducing transmission of malaria (by providing mosquito nets, for example) and for fighting the disease (through mass- handing out of anti-malaria drugs), for a specific region.”

Gabriela Gomes added, “Huge efforts are being put into fighting malaria in developing countries. Our model presents a very optimistic outlook for eradicating the disease in areas where it is moderately endemic, contrary to current thinking. We are now looking for research partners who may provide us with more clinical data, from more regions in Africa, which we could use to strengthen our model, and feed into effective eradication programmes.”

Contact:
Gabriela Gomes
Email: ggomes@igc.gulbenkian.pt
Citation: Águas R, White LJ, Snow RW, Gomes MGM (2008) Prospects for Malaria Eradication in Sub-Saharan Africa. PLoS ONE 3(3): e1767. doi:10.1371/journal.pone.0001767

Rebecca Walton | alfa
Further information:
http://www.plosone.org/doi/pone.0001767

Further reports about: Disease Malaria Transmission endemic

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>