Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research could put penicillin back in battle against antibiotic resistant bugs that kill millions

12.03.2008
Research led by the University of Warwick has uncovered exactly how the bacterium Streptococcus pneumoniae has become resistant to the antibiotic penicillin. The same research could also open up MRSA to attack by penicillin and help create a library of designer antibiotics to use against a range of other dangerous bacteria.

Worldwide Streptococcus pneumoniae causes 5 million fatal pneumonia infections a year in children. In the US it causes 1 million cases a year of pneumococcal pneumonia in the elderly of which up to 7% are fatal. This new research has completely exposed how Streptococcus pneumoniae builds its penicillin immunity and opens up many ways to disrupt that mechanism and restore penicillin as a weapon against these bacteria.

The research was led by Dr Adrian Lloyd of the University of Warwick’s Department of Biological Sciences along with other colleagues from the University of Warwick, the Université Laval, Ste-Foy in Quebec, and The Rockefeller University in New York. The research was funded by Welcome Trust and the MRC.

Penicillin normally acts by preventing the construction of an essential component of the bacterial cell wall: the Peptidoglycan. This component provides a protective mesh around the otherwise fragile bacterial cell, providing the mechanical support and stability required for the integrity and viability of cells of Streptococcus pneumoniae and other bacteria including MRSA.

The researchers targeted a protein called MurM that is essential for clinically observed penicillin resistance and has also been linked to changes in the chemical make up of the peptidoglycan that appear in penicillin resistant Streptococcus pneumoniae isolated from patients with pneumococcal infections.

The researchers found that MurM acted as an enzyme that was key to the formation of particular structures within the S. pneumoniae peptidoglycan called dipeptide bridges that link together strands of the peptidoglycan mesh that contributes to the bacterial cell wall. The presence of high levels of these dipeptide bridges in the peptidoglycan of Streptococcus pneumoniae is a pre-requisite for high level penicillin resistance.

The Warwick team were able to replicate the activity of MurM in a test tube, allowing them to define the chemistry of the MurM reaction in detail and understand every key step of how Streptococcus pneumoniae deploys MurM to gain this resistance.

The results will allow the Warwick team, and any interested pharmaceutical researchers, to target the MurM reaction in Streptococcus pneumoniae in a way which will lead to the development of drugs which will disrupt the resistance of Streptococcus pneumoniae to penicillin.

The same research also offers exciting possibilities to disrupt the antibiotic resistance of MRSA which uses similarly constructed peptide bridges in the construction of the peptidoglycan component of its cell wall. Therefore, thanks to this research, even MRSA could now be opened up to treatment by penicillin.

A further spin-off from this new MurM research, is that the Warwick led researchers are also able to readily reproduce every precursor step the bacterial cell uses to create its peptidoglycan. The tools developed at Warwick open up each step of the creation of the peptidoglycan (MurA, MurB, MurC etc, etc) used by an array of dangerous bacteria. This provides a valuable collection of targets for pharmaceutical companies seeking ways of disrupting antibiotic resistance in such bacteria.

The University of Warwick part of the research team have now established a new network of academics from the fields of chemistry, biology and medicine, as well as pharmaceutical companies to share and exploit this new treasure trove of targets which could help create a range of new designer antibiotic based treatments targeted at a range of bacteria that can cause significant health problems.

This network is the UK Bacterial Cell Wall Biosynthesis Network or UK-BaCWAN and it is supported by the Medical Research Council of the UK. The network web site is http://www.warwick.ac.uk/go/bacwan

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk/go/bacwan

Further reports about: MRSA MurM Penicillin Streptococcus cause peptidoglycan pneumonia resistance resistant

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>