Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research could put penicillin back in battle against antibiotic resistant bugs that kill millions

12.03.2008
Research led by the University of Warwick has uncovered exactly how the bacterium Streptococcus pneumoniae has become resistant to the antibiotic penicillin. The same research could also open up MRSA to attack by penicillin and help create a library of designer antibiotics to use against a range of other dangerous bacteria.

Worldwide Streptococcus pneumoniae causes 5 million fatal pneumonia infections a year in children. In the US it causes 1 million cases a year of pneumococcal pneumonia in the elderly of which up to 7% are fatal. This new research has completely exposed how Streptococcus pneumoniae builds its penicillin immunity and opens up many ways to disrupt that mechanism and restore penicillin as a weapon against these bacteria.

The research was led by Dr Adrian Lloyd of the University of Warwick’s Department of Biological Sciences along with other colleagues from the University of Warwick, the Université Laval, Ste-Foy in Quebec, and The Rockefeller University in New York. The research was funded by Welcome Trust and the MRC.

Penicillin normally acts by preventing the construction of an essential component of the bacterial cell wall: the Peptidoglycan. This component provides a protective mesh around the otherwise fragile bacterial cell, providing the mechanical support and stability required for the integrity and viability of cells of Streptococcus pneumoniae and other bacteria including MRSA.

The researchers targeted a protein called MurM that is essential for clinically observed penicillin resistance and has also been linked to changes in the chemical make up of the peptidoglycan that appear in penicillin resistant Streptococcus pneumoniae isolated from patients with pneumococcal infections.

The researchers found that MurM acted as an enzyme that was key to the formation of particular structures within the S. pneumoniae peptidoglycan called dipeptide bridges that link together strands of the peptidoglycan mesh that contributes to the bacterial cell wall. The presence of high levels of these dipeptide bridges in the peptidoglycan of Streptococcus pneumoniae is a pre-requisite for high level penicillin resistance.

The Warwick team were able to replicate the activity of MurM in a test tube, allowing them to define the chemistry of the MurM reaction in detail and understand every key step of how Streptococcus pneumoniae deploys MurM to gain this resistance.

The results will allow the Warwick team, and any interested pharmaceutical researchers, to target the MurM reaction in Streptococcus pneumoniae in a way which will lead to the development of drugs which will disrupt the resistance of Streptococcus pneumoniae to penicillin.

The same research also offers exciting possibilities to disrupt the antibiotic resistance of MRSA which uses similarly constructed peptide bridges in the construction of the peptidoglycan component of its cell wall. Therefore, thanks to this research, even MRSA could now be opened up to treatment by penicillin.

A further spin-off from this new MurM research, is that the Warwick led researchers are also able to readily reproduce every precursor step the bacterial cell uses to create its peptidoglycan. The tools developed at Warwick open up each step of the creation of the peptidoglycan (MurA, MurB, MurC etc, etc) used by an array of dangerous bacteria. This provides a valuable collection of targets for pharmaceutical companies seeking ways of disrupting antibiotic resistance in such bacteria.

The University of Warwick part of the research team have now established a new network of academics from the fields of chemistry, biology and medicine, as well as pharmaceutical companies to share and exploit this new treasure trove of targets which could help create a range of new designer antibiotic based treatments targeted at a range of bacteria that can cause significant health problems.

This network is the UK Bacterial Cell Wall Biosynthesis Network or UK-BaCWAN and it is supported by the Medical Research Council of the UK. The network web site is http://www.warwick.ac.uk/go/bacwan

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk/go/bacwan

Further reports about: MRSA MurM Penicillin Streptococcus cause peptidoglycan pneumonia resistance resistant

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>