Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique puts DNA profiling of E. coli on fast track

11.03.2008
Using new genetic techniques, scientists are unlocking the secrets of how E coli bacteria contaminate food and make people sick.

Michigan State University has developed a new technique to test the DNA of E. coli bacteria by examining very small genetic changes called single nucleotide polymorphisms or SNPs (pronounced snips). Using SNPs, scientists analyzed 96 markers, making genetic analysis of pathogenic bacteria possible at a rate never before accomplished.

“It used to take three months to score one gene individually,” said Thomas Whittam, Hannah Distinguished Professor at the National Food Safety and Toxicology Center at MSU. “Now, we are working on a new, more rapid system that can do thousands of genes per day.”

In a new study released in the Monday edition of the Proceedings of the National Academy of Sciences, “Variation in Virulence Among Clades of Escherichia coli O157:H7 Associated With Disease Outbreaks,” Whittam and his co-authors looked at the DNA of more than 500 strains of a particularly dangerous member of the E. coli family, O157:H7. In collaboration with David Alland of the University of Medicine and Dentistry of New Jersey, Whittam discovered that individual bacteria could be separated into nine major groups, called clades.

... more about:
»Coli »DNA »E. coli »Whittam

E coli makes people sick because they produce toxins, called Shiga toxins. These toxins block protein synthesis, an essential cellular function, particularly in the kidneys. What Whittam found was that the different clades produced different kinds of Shiga toxins in varying amounts based on their DNA.

“For the first time, we know why some outbreaks cause serious infections and diseases and others don’t,” Whittam said. “The different E. coli groups produce different toxins.”

Rapid genetic characterization also opens up a new world of possibilities for identifying the bacterial culprits in outbreaks and finding out where they originated.

E. coli usually come from animal waste contaminating human sources of food or water. Finding out how the bacteria entered the food source always has been a challenge, but now food safety experts can use DNA just like police use DNA at crime scenes. Scientists will be able to identify those bacteria making people sick, find out where they entered the food source and then use this information to reduce contamination.

“This is the first time anyone has been able to classify very closely related groups,” Whittam said.

“This is also the first time we can tell the differences in how they cause disease.”

Whittam also has plans to use this methodology to study other bacterial strains, like Shigella, a major cause of diarrhea around the world. “This new equipment can be used to identify hundreds of thousands of pathogenic bacteria,” Whittam said.

Thomas Whittam | EurekAlert!
Further information:
http://www.msu.edu

Further reports about: Coli DNA E. coli Whittam

More articles from Life Sciences:

nachricht Hopkins researchers ID neurotransmitter that helps cancers progress
26.04.2019 | Johns Hopkins Medicine

nachricht Trigger region found for absence epileptic seizures
25.04.2019 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unprecedented insight into two-dimensional magnets using diamond quantum sensors

For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide. In addition, they found a long-sought explanation for the unusual magnetic properties of the material. The journal Science has published the findings.

The use of atomically thin, two-dimensional van der Waals materials promises innovations in numerous fields in science and technology. Scientists around the...

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...
All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Hopkins researchers ID neurotransmitter that helps cancers progress

26.04.2019 | Life Sciences

Unprecedented insight into two-dimensional magnets using diamond quantum sensors

26.04.2019 | Physics and Astronomy

Liquid crystals in nanopores produce a surprisingly large negative pressure

26.04.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>