Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Co-operation between figs, wasps and parasites proves three is not always a crowd!

11.03.2008
Scientists at the University of Reading have found that during mutualism, a co-operative relationship between two different species, a third parasitic species may help to keep the relationship stable. During mutualism both species benefit.

However, the long-term relationship between them can be threatened by individuals who take too much advantage of the relationship in the short-term for their own benefit. This new research suggests that the stable mutualism between tropical figs and pollinator wasps, which is about 100 million years old, may be maintained partly by parasitic wasps. This is contrary to the commonly held belief that parasites always have a negative effect.

The co-operative relationship between tropical figs and specialised pollinator wasps is such that the wasps pollinate the trees, and the trees provide resources for developing wasp offspring. The female wasp enters a fig fruit, and then pollinates the tiny flowers within the fruit. The tree’s seeds develop in parts of the flowers known as ovules, and the pollinator lays her eggs into some of these ovules. Importantly, ovules which contain developing seeds need to be free of wasp offspring because they eat the seeds. Therefore, each egg laid costs the tree one seed and in return, the female wasp’s offspring are responsible for dispersing the tree’s pollen once they leave the fig fruit. Trees need to produce both wasps and seeds for the mutualism to persist, but natural selection should favour wasps which exploit the maximum number of fig ovules in the short-term. This results in a conflict of interest between wasp and tree.

The fig fruits contain hundreds of ovules that can be grouped into ones which are situated closer to the centre of the fruit, known as inner ovules, and others which are further away from the centre of the fruit, known as outer ovules. Most pollinator wasp eggs are found in the inner ovules, whereas most fig seeds develop in the outer ovules. The female pollinator wasps avoid laying eggs in the outer ovules and this helps to keep the relationship between wasp and fig stable. This new research has found out that they do this because pollinator offspring developing in the outer ovules are at high risk of attack by parasitic wasps. These parasites lay their eggs directly into ovules from outside the fruit and will kill pollinator offspring. The risk from parasitic wasps is greatly reduced towards the centre of the fruit, which is likely to play a part in encouraging pollinators to avoid laying eggs in the outer ovules. It also reduces the total numbers of eggs which the wasps lay.

... more about:
»EGG »develop »mutualism »outer »ovule »parasites »pollinator »stable

Professor James Cook, from the University’s School of Biological Sciences said “Inner ovules can provide an ‘enemy-free-space’ for pollinator wasps to lay their eggs in. Our results suggest that this favours pollinators that lay their eggs in the inner ovules and leave the outer ovules free for fig seeds to develop in. Because a wasp and a seed cannot develop in the same ovule, this is vital to ensuring that fig seed production is safeguarded. Parasitic wasps are generally thought to have negative effects on the relationship between figs and their pollinators, but our results show that in fact they may help to keep a mutualistic relationship stable in the natural world.”

Lucy Chappell | alfa
Further information:
http://www.reading.ac.uk

Further reports about: EGG develop mutualism outer ovule parasites pollinator stable

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>