Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New revelations in epigenetic control shed light on breast cancer

06.03.2008
Scientists discover that long-term regulation of the human genome is much more dynamic than assumed

Epigenetic regulation – modifications to the structure of chromatin that influence which genes are expressed in a cell – is a key player in embryonic development and cancer formation. Researchers at the European Molecular Biology Laboratory [EMBL] in Heidelberg now gained new insight into one crucial epigenetic mechanism and reveal that it acts much faster than assumed.

In this week's issue of Nature they report that estrogen causes rapid epigenetic changes in breast cancer cells. The new findings impact upon our understanding of how cells interpret their DNA and suggest that epigenetic regulation can affect gene expression immediately and long-term.

Epigenetic changes to the structure of chromatin – tightly packaged DNA - grant or deny access to the molecular machinery that transcribes DNA and thereby regulate gene expression. One of these mechanisms is DNA methylation, where a small chemical residue called a methyl group is added to strategic bases on the DNA. The methyl group prevents the transcription machinery from docking and thereby shuts down gene expression. For a long time scientists have considered methylation a mechanism of long-term regulation of a gene's activity, because the methylation marks are stable and maintained through cellular replication.

EMBL researchers of the group of Frank Gannon, current director of the Science Foundation Ireland, now found out that methylation marks occur rapidly in breast cancer cells in response to hormones such as estrogen or drug compounds. Estrogen withdrawal or treatment with the established anticancer drug doxorubicin cause the methyl groups to be removed from regulatory regions of specific genes within tens of minutes in human breast cancer cells. The treatment sets off a whole cycle of events: initial demethylation renders silent genes active and subsequent remethylation shuts them down again. This cycle repeats itself every 1.5 hours.

"We observed that unlike assumed for a long time methylation can act on a very short timescale. The results challenge our understanding of epigenetics as a means to regulate gene expression permanently," says Sara Kangaspeska, who carried out the research together with Brenda Stride.

The new insights into the cyclical nature of methylation might shed light on the molecular bases of cancer and development, both processes involving epigenetic mechanisms.

"In particular breast cancer is affected by estrogen signalling and changes in epigenetic control," says George Reid, co-senior author of the study. "Our next step will be to find small molecules that target the cyclical methylation processes to elucidate their precise role."

Published in Nature on 6 March 2008.

Anna-Lynn Wegener | EMBL
Further information:
http://www.embl.org/aboutus/news/press/2008/06mar08/index.html

Further reports about: DNA Regulation breast cancer epigenetic methyl methylation

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>