Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular Construction Methods Emulated

05.03.2008
Versatile compartmentalized nanostructures by orthogonal aggregation of surfactants and gelators

Not only is our body made of individual organs, our cells themselves are made of tiny organelles, a variety of separate compartments that fulfill different tasks. Such functional, nanostructured systems would also be useful for technical applications, such as biosensors, self-repairing materials, optoelectronic components, or nanocapsules.

However, it has not been possible to recreate structures with sufficient complexity in the lab. Researchers in the Netherlands, led by Jan van Esch at the Universities of Delft and Groningen as well as the BioMaDe Technology Foundation, are now pursuing a new angle. As they report in the journal Angewandte Chemie, they allow surfactants and gelators to form aggregates. These aggregates coexist without interfering with each other and thus make versatile, highly complex structures with separate compartments.

Cells contain various components, such as channels, “motors”, structural frameworks (cytoskeleton), and “power plants” (mitochondria). In order for these to form, their building blocks, mainly proteins and lipids, must “recognize” each other and form the correct assembly by self-aggregation. In addition, it is critical that compatible components do not separate into different phases: when proteins fold, the water-loving (hydrophilic) and water-repellent (hydrophobic) parts of the molecule stay far away from each other and aggregate with “like-minded” components. Biomembranes are formed when many small lipid molecules aggregate such that their hydrophobic “tails” face inward together and their hydrophilic “heads” point outward toward the aqueous medium.

The Dutch team imitated this concept by using two types of self-aggregating compounds: surfactants and gelators. Like the lipids in natural membranes, surfactants have a hydrophilic segment and a hydrophobic segment and aggregate into structures such as membrane-like double layers or vesicles (bubbles). To imitate the forces involved in protein folding—hydrogen-bridge bonds and hydrophobic interactions—the team used a disk-shaped gelator, in which hydrophobic and hydrophilic molecular components alternate in concentric rings. Just as for proteins, like attracts like. This causes the disks to stack together into columns, which forms long fibers, generating a three-dimensional network in the solution to make a gel.

The researchers allow their surfactants and gelators to aggregate together. In this process, the different components take no notice of each other. This independent formation of different supramolecular structures within a single system is called orthogonal self-aggregation. This results in the formation of novel, complex, compartmentalized architectures, for example, interpenetrating but independent networks or vesicle configurations that coexist with gel fibers.

Author: Jan van Esch, University of Delft (The Netherlands), http://www.tudelft.nl/live/pagina.jsp?id=32e323ab-be78-43e4-96db-e6452fc418e5&lang=en

Title: Preparation of Nanostructures by Orthogonal Self-Assembly of Hydrogelators and Surfactants

Angewandte Chemie International Edition 2008, 47, No. 11, 2063–2066, doi: 10.1002/anie.200704609

Jan van Esch | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.tudelft.nl/live/pagina.jsp?id=32e323ab-be78-43e4-96db-e6452fc418e5&lang=en

Further reports about: Components Gelator Lipid hydrophilic hydrophobic surfactants

More articles from Life Sciences:

nachricht Nanotubes built from protein crystals: Breakthrough in biomolecular engineering
15.11.2018 | Tokyo Institute of Technology

nachricht Insect Antibiotic Provides New Way to Eliminate Bacteria
15.11.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>