Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural progneitor cells as reservoirs for HIV in the brain

05.03.2008
Impaired brain function is a prominent and still unsolved problem in AIDS . Shortly after an individual becomes infected with HIV, the virus can invade the brain and persist in this organ for life. Many HIV-infected individuals experience disturbances in memory functions and movement, which can progress to serious dementia. How the virus causes brain disease is still unclear.

Dr. Ruth Brack-Werner and her team at the Institute of Virology of the German Research Center for Environmental Health previously demonstrated that HIV invades not only brain macrophages but also astrocytes. Astrocytes are the most abundant cells in the brain. They perform many important activities which support functions of nerve cells and protect them from harmful agents.

HIV-infected astrocytes normally restrain the virus and prevent its production. However, various factors can cause astrocytes to lose control over the virus, allowing the virus to replicate and to reach the brain. There HIV can infect other brain cells as well as immune cells that patrol the brain and may carry the virus outside the brain.

Thus astrocytes form a reservoir for HIV in infected individuals and represent a serious obstacle to elimination of the virus from infected individuals. Whether this also applies to other types of brain cells was unclear until now. In a study recently published in AIDS, Dr. Brack Werner, together with Ina Rothenaigner and colleagues present data indicating that neural progenitor cells can also form HIV reservoirs in the brain. Neural progenitor cells are capable of developing into different types of brain cells and have an enormous potential for repair processes in the brain.

... more about:
»HIV »astrocytes »neural »persist »progenitor

Dr. Brack-Werner’s team used a multi-potent neural progenitor cell line, which can be grown and developed to different types of brain cells in the laboratory, for their studies. After exposing these neural progenitor cells to HIV, they examined the cultures for signs of virus infection for 115 days. HIV was found to persist in these cultures during the entire observation period. The cultures released infectious HIV particles for over 60 days and contained information for production of HIV regulatory proteins- Tat, Rev and Nef- for even longer. Dr. Brack-Werner and her team also examined neural progenitor cell populations cells with persisting HIV for differences from uninfected cells. They found that HIV persistence had an influence on the expression of selected genes and on cell morphology, but did not prevent their development to astrocytes. Thus HIV persistence has the potential to change neural progenitor cells.

Dr. Brack-Werner’s summarizes, "Our study indicates that neural progenitor cells are potential reservoirs for HIV and that HIV persistence has the potential to change the biology of these cells." In future studies the researchers are planning to investigate the influence of HIV infection on important functions of neural progenitor cells. These include migration to diseased regions of the brain and development of different types of brain cells. Subsequently they will investigate how HIV changes neural progenitor cells and, importantly, how to protect neural progenitor cells from harmful effects of the virus in HIV infected individuals.

Publication:

Rothenaigner, I., Kramer, S., Ziegler, M., Wolff, H., Kleinschmidt, A., Brack-Werner, R. (2007): Long-term HIV-1 infection of neural progenitor populations. AIDS 21:2271–2281.

Michael van den Heuvel | alfa
Further information:
http://www.helmholtz-muenchen.de

Further reports about: HIV astrocytes neural persist progenitor

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>