Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tuberculosis bacterium is double-protected

04.03.2008
The first 3-D images that disclosure a double membrane surrounding mycobacteria were recorded by Martinsried scientists, ending a long scientific debate about the mycobacterial outer membrane and opening new pathways to improve the development of chemotherapeutic substances against tuberculosis (PNAS March, 11th, 2008; Early Online Publication).

Robert Koch who detected the tuberculosis causative agent in March 1882 described the contemporary situation: "Statistics tells us that one in seven of all humans dies of tuberculosis..."

Even today, ten million people suffer from the disease yearly, and every day, Mycobacterium tuberculosis causes the death of about 4000 patients. Medical treatment is lengthy and protection through vaccinations is, today as before, insufficient. This is why research groups worldwide study the 'acid-fast rods', which are protected by a complex and hardly penetrable cell wall. Its special structure is the reason for the resistance to external factors and for the inefficient uptake of antibacterial substances.

It has been known for some time that long-chained, strongly bound fatty acids - the mycolic acids - are necessary to preserve the resistance properties of the cell wall. But even 125 years after Koch's discovery, our knowledge of the mycobacterial cell envelope is incomplete and characterized by contradictory hypotheses. Until recently, scientists assumed that mycolic acids form a closed layer, or that they comprise the inner part of a considerably thick and asymmetrical membrane. Now, Harald Engelhardt and his group at the Max Planck Institute of Biochemistry in Martinsried have proved that the outer cell wall layer consists of a distinct lipid bilayer. Its structure, however, is hardly compatible with the current view of the cell wall architecture.

Christian Hoffman, a PhD student in Harald Engelhardt's lab, investigated the cell structure of Mycobacterium smegmatis and Mycobacterium bovis BCG, a close relative to the tuberculosis bacterium, in the electron microscope. The scientists were able to obtain 3-D images of the bilayer structure from intact cells by means of cryo-electron tomography, a technique that was developed at the institute in Martinsried. The method requires projection data from different angles of a shock-frozen cell (-190 °C) that are optimized for the number, contrast and focus of the images. In order to avoid radiation damage, the cell must only be exposed to the electron beam for a limited period of time. The images are thus noisy and lack contrast. The Department for Molecular Structural Biology, headed by Professor Wolfgang Baumeister, and in this case especially Jürgen Plitzko, pioneers development and research of cryo-electron tomography, which is a valuable technique to investigate structures of intact cells in a close-to-life state.

Hoffmann and his colleagues observed a more symmetrical and significantly thinner mycobacterial membrane than previously expected. The researchers therefore probed their results by electron microscopy of ultrathin cryosections of frozen cells (each section 35 millionth of a millimeter in thickness), which had not been treated further, and could confirm their findings. The researchers can now satisfactorily explain how the pore proteins are embedded in outer membrane of Mycobacterium smegmatis. The molecular structure of these proteins did not fit to the existing models of the mycobacterial cell wall.

Harald Engelhardt, the leader of the research project, agrees with previous hypotheses insofar as mycolic acids anchor the outer membrane to the cell wall. "But the membrane is probably not structured the way we thought. The mycolic and other fatty acids must be organized differently in the cell membrane than previously assumed." The Martinsried microbiologists and structural researchers now see the need for a more detailed study of the mycobacterial outer membrane. The recent findings provide an appropriate basis for such inquiries. Because now, distinct studies investigating the translocation of molecular substances across the outer membrane have been made possible, which should also be useful for the development of chemotherapeutic drugs. Engelhardt: "After all, the drugs must pass through cell wall as effectively as possible, and a better understanding of the mycobacterial cell envelope will certainly be helpful."

[HE/EMD]

Original Publication

Christian Hoffmann, Andrew Leis, Michael Niederweis, Jürgen M. Plitzko, and Harald Engelhardt. Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure.

Proceedings of the National Academy of Sciences USA, March 11th, 2008, early online publication, DOI 10.1073/pnas.0709530105)

Weitere Informationen:

Webpage of the Department Molecular Structural Biology (Head: Prof. Dr. Wolfgang Baumeister)

http://www.biochem.mpg.de/baumeister

WHO-Report No. 4: "Anti-tuberculosis drug resistance in the world"
http://www.who.int/tb/features_archive/drsreport_launch_26feb08/en/index.html
Bacteria Which Sense the Earth's Magnetic Field. Press release of the Max Planck Society, November 20th, 2005.
http://www.mpg.de/english/illustrationsDocumentation/documentation/
pressReleases/2005/pressRelease200511171/index.html

Eva-Maria Diehl | idw
Further information:
http://www.biochem.mpg.de/

Further reports about: Martinsried Mycobacterium Tuberculosis mycobacterial mycolic

More articles from Life Sciences:

nachricht Something old, something new in the Ocean`s Blue
14.11.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics
13.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

New opportunities in additive manufacturing presented

14.11.2019 | Materials Sciences

Massive photons in an artificial magnetic field

14.11.2019 | Physics and Astronomy

Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)

14.11.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>