Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

St. Jude researchers find key step in programmed cell death

03.03.2008
The discovery provides insight into how certain proteins, including Hax1, work and how they control the process of apoptosis

Investigators at St. Jude Children’s Research Hospital have discovered a dance of proteins that protects certain cells from undergoing apoptosis, also known as programmed cell death. Understanding the fine points of apoptosis is important to researchers seeking ways to control this process.

In a series of experiments, St. Jude researchers found that if any one of three molecules is missing, certain cells lose the ability to protect themselves from apoptosis. A report on this work appears in the advance online publication of “Nature.”

“This is probably the first description of what is happening mechanistically that contributes to the ability of cells to delay apoptosis,” said James Ihle, Ph.D., the paper’s senior author and chair of the St. Jude Department of Biochemistry. “It provides incredible insights into how three proteins work and how they can control apoptosis.”

The molecular interactions that St. Jude researchers describe in “Nature” play out in nerve cells and blood cells that develop from hematopoietic (blood-forming) stem cells.

A research team elsewhere recently reported that Kostmann’s syndrome, a potentially fatal inherited deficiency of granulocytes in children, caused by excessive apoptosis of granulocytes, results from a deficiency in one of the three proteins, called Hax1.

“This suggests that the protein is playing basically the same role in humans as we described in mice,” Ihle said.

Apoptosis rids the body of faulty or unneeded cells. However, molecular malfunctions that trigger apoptosis may cause some diseases, including Parkinson’s disease. Understanding the biochemical interactions that control the extent of programmed cell death could lead to new treatments.

St. Jude biochemists have long studied how cytokines—small proteins used by neurons and blood-borne cells to communicate messages—contribute to keeping cells alive. For example, they demonstrated earlier that most cytokines controlling hematopoietic cells require an enzyme called Jak2, or Jak3 in lymphocytes, at the receptors where cytokines attached to the cell.

In screening for components that are regulated by the Jak enzymes, the St. Jude team found the Hax1 protein.

“That was intriguing because several studies suggested that Hax1 was controlled by cytokine signaling,” Ihle said. “Also, studies have suggested that if you overexpressed Hax1 in cells, the cells were protected from undergoing apoptosis.”

To pursue this lead, the researchers genetically engineered mice that lacked the gene for Hax1. The results showed that apoptosis in the animals’ brain caused extensive nerve cell degeneration that killed the mice within 10 to 12 weeks. Second, apoptosis in immune-system lymphocytes occurred in the altered mice eight hours sooner than in those with the Hax1 gene, when limited amounts of cytokines were available.

“That additional window of survival is extremely important because in the body, cytokines are limiting.” Ihle said. “The key observation was that Hax1 was important in helping cells to survive. Importantly, what happened to the mice we generated was remarkably similar to what happens if you remove the mitochondrial enzymes called HtrA2 or Parl.”

Exploring the similarities, the investigators found that Hax1 and Parl pair up in the inner membrane of the mitochondria—tiny chemical packets that serve as the main energy source for cells. HtrA2 is made in the cell’s cytoplasm and is transported into the mitochondria, where the enzyme must have a region removed for it to be active. This requires snipping away 133 amino acids, the building blocks of proteins. The St. Jude researchers demonstrated that it is the Hax1/Parl pair that positions HtrA2 to allow the precise snipping that is required. Without Hax1, the snipping does not occur and HtrA2 remains inert.

In lymphocytes, members of the Bcl-2 family of proteins both protect and initiate apoptosis. For this reason, Ihle and the researchers explored this family of proteins to understand why lymphocytes needed an active HtrA2 mitochondrial enzyme. This led them to discover that if active HtrA2 were present, the incorporation of a protein called Bax into the mitochondrial outer membrane did not occur. This was significant since accumulation of Bax in the outer mitochondrial membrane allows the release of proteins that set off a chain of biochemical reactions, including the activation of enzymes that are responsible for cell death.

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

Further reports about: Cytokine Hax1 HtrA2 apoptosis enzyme lymphocytes mitochondrial

More articles from Life Sciences:

nachricht Cell Division at High Speed
19.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>