Researchers have discovered a gene that can block the spread of HIV

Dr. Stephen Barr, a researcher in the Department of Medical Microbiology & Immunology at the U of A, says his team identified a human gene called TRIM22 that can block HIV infection in a cell culture by preventing the assembly of the virus.

Barr says “interestingly, when we prevent cells from turning on TRIM22, the normal interferon response (a natural defense produced by our cells to fight infection by viruses such as HIV) is useless at blocking HIV infection. This means TRIM22 is an essential part of our body’s ability to fight off HIV.”

Barr’s team finds the results very exciting because it shows our bodies have a gene that is capable of stopping the spread of HIV. They are now trying to figure out why this gene does not work in people infected with HIV and if there is a way to turn this gene on in those individuals.

“We hope that our research will lead to the design of new drugs and/or vaccines that can halt the person-to-person transmission of HIV and the spread of the virus in the body, thereby blocking the onset of AIDS.”

Media Contact

Carmen Leibel EurekAlert!

More Information:

http://www.ualberta.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors