Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA shows genetic variability of the nene lost more than 500 years ago, not during the 20th century

07.06.2002


Consider the plight of the lonely nene goose: Fated to occupy just one island in all the world; reduced in numbers to fewer than 30 individuals by the middle of the last century; each bird as closely related to the others as human siblings.



What caused the narrowing of the nenes’ circumstances to the point of near-extinction? Was the isolation of island living to blame for draining their gene pool to a puddle, or was it caused by the 20th century population decline? How did they survive and recover when many other species of flightless Hawaiian birds disappeared altogether before recorded history?

Research reported in today’s edition of the journal Science suggests that a boom in the human population between 900 and 350 years ago may have impacted and reduced the population size of the nene during that time, and consequently diminished the species’ genetic variation.


A team of scientists from the Conservation and Research Center of the Smithsonian’s National Zoological Park and National Museum of Natural History, along with a collaborator from the University of California, Los Angeles, examined DNA from nene on the island of Hawaii from four time periods: Extant captive and wild birds; museum specimens collected between 1833 and 1928; bones from archaeological middens radiocarbon dated at 160 to 500 years ago; and bones from paleontological sites dating from 500 to 2540 radiocarbon years before the present. They were surprised to find the levels of genetic variation typical of contemporary geese only in the paleontological samples.

"We were expecting to see evidence of the loss of genetic variation first in the museum specimens, coincident with the nene population decline that began in the 1800s," said Robert Fleischer, head of the Natural History Museum’s genetics laboratory. "Instead, we found the precipitous drop much earlier, in the samples dating from between 500 and 850 years ago, coincident with the expansion of human settlements on the island."

Fleischer noted that the combination of new techniques and ancient specimens makes it possible to look at population genetics through time, as far back at 2,500 years ago.

It is widely believed that the ecological changes associated with human interference contributed to extinctions of many bird species in the islands 500 to a thousand years ago. These species, including the nene, likely were affected by habitat changes, introduced predators or directly by their consumption as food. The Smithsonian-led research goes a step further to implicate the spread of human settlements not just in the extinction of species, but also in the loss of one species’ genetic diversity.

Moreover, the study demonstrates that surviving modern species still bear the imprint of human disruption in their genetic makeup.

"Our research also debunks the belief that Hawaii was a pristine paradise, and that prehistoric man lived in perfect harmony with nature," said Helen James, museum specialist in the Natural History Museum’s Division of Birds.

James pointed out also that museum collections are vitally important to even the most cutting edge contemporary research. The Smithsonian team drew on specimens in its own collections, from the first U.S. exploring expeditions, as well as from the Bishop Museum in Hawaii and skins from Europe.

Elizabeth Tait | EurekAlert

More articles from Life Sciences:

nachricht Phagocytes versus killer cells - A closer look into the tumour tissue
21.10.2019 | Universität Duisburg-Essen

nachricht How intestinal cells renew themselves – the role of Klumpfuss in cell differentiation
21.10.2019 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Fraunhofer LBF and BAM develop faster procedure for flame-retardant plastics

21.10.2019 | Materials Sciences

For EVs with higher range: Take greater advantage of the potential offered by lightweight construction materials

21.10.2019 | Materials Sciences

Benefit and risk: Meta-analysis draws a heterogeneous picture of drug-coated balloon angioplasty

21.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>