Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind tunnel experiments award flight certificate to bats

29.02.2008
What’s the similarity between a bumblebee and a hummingbird? None – apart from one thing: neither the bumblebee nor the hummingbird should be ebale to fly according to classic wing theory. Yet, this is what they do for a living.

In 1995 the conundrum of bumblebee flight got its final solution. And this week the aerodynamics of a hovering bat species has been revealed. Its flight was studied in the wind tunnel laboratory of Lund University, and the results are published in the prestigious journal Science.

The wind tunnel at Lund University is specially crafted for research on bird flight. Birds fly “at the spot” against a headwind, allowing detailed investigation of wing movements using high speed video cameras. It’s also possible to visualize the vortices around the wings and in the wake using fog as tracer particles.

In 2003 professor Anders Hedenström investigated the aerodynamics of bird flight using this method for the first time. In the spring 2007 his lab presented results from applying this method to flying bats for the first time. A nectar-feeding bat species, Palla’s long-tongued bat, was trained to visit a feeder in the wind tunnel. By varying the speed between 0 m/s (hovering) to 7 m/s, different behaviors were studied.

... more about:
»Flight »Hedenström »Tunnel »vortices

"When we investigated the aerodynamics of our bats we discovered that the wings generated more lift than they should at the slowest speeds (as dictated by classic wing theory),"says professor Hedenström.

"We recorded vortices shed in the wake, which we know well from our previous studies on birds. Now, our new study show that a stable leading edge vortex (LEV) is developed on top of the wing, and this vortex adds significant amounts of lift. Such vortices were previously known in insects, for example in bumblebees, and it was the discovery of leading edge vortices that finally resolved the bumblebee flight conundrum."

How can the bats generate such high lift? One of the team members and lead author of the new study, Florian Muijres, explains:

"The high lift arises because the bats can actively change the shape (curvature) by their elongated fingers and by muscle fibers in their membranous wing. A bumblebee cannot do this; its wings are stiff. This is compensated for by the wing-beat frequency. Bats beat their wings up to 17 times per second while the bumblebee can approach 200 wing-beats per second."

The paper in Science is: Leading-Edge Vortex Improves Lift in Slow-Flying Bats, authors are F T Muijres, L C Johansson, R Barfield, M Wolf, G R Spedding and A Hedenström.

Image legends:
The bats are highly maneuverable and can make quick turns during flights
http://www.naturvetenskap.kanslimn.lu.se/bataction.jpg
(Photo: L C Johansson, M Wolf, A Hedenström)
Vortex system on the bat’s wings – it is the vortex along the leading edge that is now described for the first time

http://www.naturvetenskap.kanslimn.lu.se/BoW/GF/bat_vortex_pattern.tif

Ingela Björck | alfa
Further information:
http://www.lu.se

Further reports about: Flight Hedenström Tunnel vortices

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>