Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Notch controls bone formation and strength

26.02.2008
Notch, a protein known to govern the determination of cell differentiation into different kinds of tissues in embryos, plays a critical role in bone formation and strength later in life, said researchers from Baylor College of Medicine in Houston in a report that appears online today in the journal Nature Medicine. Their findings may provide a basis for understanding osteoporosis and in diseases in which there is too much bone.

“We knew that Notch is important in patterning the skeleton,” said Dr. Brendan Lee, professor of molecular and human genetics and pediatrics at BCM and a Howard Hughes Medical Institute investigator. “After this initial patterning of the skeleton, we saw a dimorphic or two-pronged function for Notch. If there was an increase of Notch activity in bone cells, we get a lot more bone. Notch stimulates early proliferation of osteoblastic cells (cells responsible for bone formation). However, when they ‘knocked out’ the Notch function in such cells in the laboratory, they found osteoporosis or the loss of bone, similar to age-related osteoporosis in humans.”

“Mice had an acceptable amount of bone at birth, but as they got older, they lost more and more bone,” said Lee, senior author of the report. “Loss of Notch signaling might relate to what happens when we get older.”

They found that the osteoblasts, which promote bone formation, worked fine when they abolished Notch function in bone forming cells. However, the animals lacked the ability to regulate activity of osteoclasts, whose primary function is to resorb or remove bone. Many women who have osteoporosis actually have a similar problem, an imbalance of bone formation vs. bone resorption. They make enough bone but they resorb bone cells at an abnormally high rate.

... more about:
»Notch »formation »osteoporosis »skeleton

In the laboratory, Lee and his colleagues found that when animals were bred to lack Notch, they lost also the ability to suppress bone resorption. That balance between bone formation and resorption allows organisms to maintain a healthy skeleton.

Future studies may look at the possiblity that loss of Notch interferes with the natural signal between osteoblasts and osteoclasts (bone resorbing cells) and prevents the homeostasis or natural balance between the two.

That means the protein Notch and the cellular pathways that express and control it might be targets for drugs to treat bone disorders, said Lee, also a researcher in the Dan L. Duncan Cancer Center at BCM.

The work demonstrates the importance of going from patients to the laboratory and back again, he said. This study began with patients who suffer from a problem called spondylocostal dysplasia. These children and adults have problems with the pattern of their spine. They have fusions of parts of the spine or ribs. Several years ago, other scientists showed that a mutation of the pathway for Notch causes some of these problems. “Our care of these patients suggested to us that Notch may have important function even after the establishment of this initial pattern of the skeleton.”

Notch also plays a role in other disorders, including those of the blood and cancer.

“Notch is important in the blood system,” said Lee. “It regulates whether a stem cell becomes a ‘T’ or a ‘B’ cell. When Notch is mutated in the blood system, it causes cancer.”

That knowledge led him and his colleagues to look at the protein in bone.

“This is a complex system and it is why personalized medicine is important,” said Lee. “By identifying all of the major (cellular) pathways that contribute to a specific trait or feature like bone mass in each person, we could one day develop therapies specific for that person.”

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu
http://www.nature.com/nm/index.html

Further reports about: Notch formation osteoporosis skeleton

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>