Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism Of Blood Clot Elasticity Revealed In High Definition

26.02.2008
Blood clots can save lives, staunching blood loss after injury, but they can also kill. Let loose in the bloodstream, a clot can cause a heart attack, stroke or pulmonary embolism.

A new study reveals in atomic detail how a blood protein that is a fundamental building block of blood clots gives them their life-enhancing, or life-endangering, properties.

The study, conducted by researchers at the University of Illinois and the Mayo College of Medicine, appears in the journal Structure.

Fibrinogen molecules form elastic fibers, the main material of blood clots. When a blood vessel is ruptured, signaling proteins in the blood convert fibrinogen into its active form, called fibrin. Fibrin molecules link together in a scaffold of fibers that seals the vesicle. Cells in the blood, such as red blood cells, fill the gaps.

... more about:
»Fibrinogen »Lim »Molecular »blood »clot »elastic »extension

Fibrinogen is highly elastic, able to reversibly stretch to two or three times its original length.

“Once they’re formed, blood clots have to be elastic because they have a mechanical function to withstand blood pressure,” said Klaus Schulten, holder of the Swanlund Chair in Physics at Illinois.

Understanding what gives fibrinogen its flexibility could help in the design of drugs to enhance their function, he said.

“We investigated what makes blood clots elastic,” said Eric Lee, a graduate research assistant and student in the M.D./Ph.D. program at Illinois. “How do we make them easier to break up or make them less likely to rupture?”

Bernard Lim, a cardiologist at Mayo and an expert on the science of blood clots, contacted Schulten’s group in 2006 for help with a puzzling finding. Lim had conducted a series of experiments using atomic force microscopy to measure the amount of force required to stretch individual fibrinogen molecules.

After dozens of trials, Lim had come up with a “force extension curve” that showed how the fibrinogen molecule behaved when it was stretched. His data indicated that the fibrinogen molecule elongates in a sequential fashion, with three distinct phases. But he could not tell which parts of the fibrinogen molecule were involved.

Fibrinogen is a symmetrical molecule, containing a central region connected to two end regions by long, interweaving coiled chains, called alpha helices. These “coiled coils” were believed to give the molecule its elasticity. But how?

The Illinois team used a computational approach to tackle the mystery. Using steered molecular dynamics (SMD), they modeled the behavior of every atom of the fibrinogen molecule as it was stretched. The computation involved more than a million atoms, and required six months to complete.

The resulting simulation ( see movie) generated a force extension curve that matched the one Lim had produced.

“This was an incredibly strong piece of evidence that what (Lim) saw wasn’t just in the eye of the beholder, but he saw really a property of the protein,” Schulten said.

The simulation also showed in molecular detail how the fibrinogen molecule responded to stretching. Each phase in the force extension curve corresponded directly with a distinct set of events in the elongation of the molecule.

“The simulations revealed that … the extension occurs in a specific and orderly pattern, with distinct regions within the coiled-coil unraveling before others,” the authors wrote.

Lim had also demonstrated that changes in calcium levels or in the pH (acidity) of a blood clot could alter fibrinogen elasticity, a finding that could influence the design of pharmaceutical agents.

“By understanding what happens at the molecular level, you can understand where to target drugs,” Lee said.

This study points to the efficacy of combining molecular dynamics simulations with experimental data on actual molecules, Schulten said. This is proving to be an effective way to get to the heart of molecular behavior, he said.

Simulations can test important, but potentially ambiguous, experimental findings, Schulten said. “And we can see (the behavior of the molecule) in chemical detail, in atomic detail. We see the full chemistry of this mechanical process.”

Schulten directs the theoretical and computational biophysics group at the Beckman Institute for Advanced Science and Technology.

Editor’s note: To reach Klaus Schulten, call 217-244-1604; e-mail: schulten@uiuc.edu.

Klaus Schulten | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: Fibrinogen Lim Molecular blood clot elastic extension

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>