Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CSHL scientists discover new details of a gene-regulatory network governing metabolism

25.02.2008
NADP molecule regulates a cascade enabling yeast cells to adjust metabolic state

Metabolism is a central feature of life – a myriad of biochemical processes that, together, enable organisms to nourish and sustain themselves. Scientists at Cold Spring Harbor Laboratory (CSHL) are in the forefront of efforts to demonstrate how the regulation of genes governs fundamental life processes, including metabolism.

Such research, performed on simple model organisms like yeast cells, has implications for efforts to understand natural processes such as aging and disease states including cancer.

This week a team at CSHL led by Professor Leemor Joshua-Tor, Ph.D., announced a new and unexpected wrinkle in a story they previously thought they understood about how yeast cells, through the action of genes, adjust their metabolism in response to changes in their sources of food. The team’s findings were published February 22 in the journal Science.

... more about:
»CSHL »Joshua-Tor »Protein »Source »metabolism »sugar »yeast

Adapting to New Energy Sources

“S. cerevisiae, or common baker’s yeast, can use any number of different types of sugar molecules for energy production,” noted Dr. Joshua-Tor, a structural biologist. “Importantly, the yeast cell can rapidly respond to changes in its nutritional environment by altering the expression of specific genes that allow it to make use of those different energy sources.”

This much, notes Dr. Joshua-Tor and colleagues, has been understood for years. “The players involved in this process have been known for some time. But we did not understand precisely how the components of this particular biochemical pathway worked together,” said Stephen Johnston, a professor at the Biodesign Institute at Arizona State University and a co-author of the study.

It was Dr. Joshua-Tor’s team at CSHL that took the step of investigating the architecture of the proteins involved in the pathway, at the level of individual atoms. Using a technique called x-ray crystallography, they discovered a “player” in the molecular cast of characters whose involvement previously had been overlooked.

The unexpected molecule is called NADP. The team discovered that when a yeast cell changes from using glucose, a simple sugar, as a nutritional source to using galactose, a more complex sugar often found in dairy products and vegetables such as sugar beets, NADP is called into action. It “docks” to a protein called Gal80p, which acts along with a gene regulating-protein called Gal4p, to adapt the metabolism of the yeast cell so that it can make use of galactose.

“Importantly, changes in cellular levels of NAD, a close relative of NADP, had previously been linked to a gene circuit that controls aging and longevity in a large number of different organisms, including yeast but also including animals,” said Professor Rolf Sternglanz of Stony Brook University in New York, a co-author of the study.

Why The Regulatory Cascade Is Important

“It is becoming increasingly clear that the metabolic state of a cell is linked to the expression of its genes in a way that impacts biological processes of many kinds, ranging from cancer to aging,” said Dr. Joshua-Tor. The biochemical cascade identified by the team is part of a complex chain of events whose object is regulation of the output of specific genes.

Not only does the team’s work help explain how links in that gene-regulatory chain are constructed. “Gene-regulatory proteins impact every property of a cell and have long been recognized as possible targets for drugs,” said Dr. Joshua-Tor. “However, these types of proteins have proven resistant to the chemistry of modern drug design. A detailed understanding of how gene regulatory proteins are controlled may offer new and unanticipated opportunities to design drugs that would impact this class of proteins.”

Jim Bono | EurekAlert!
Further information:
http://www.cshl.edu
http://www.sciencemag.org/cgi/content/full/319/5866/1090

Further reports about: CSHL Joshua-Tor Protein Source metabolism sugar yeast

More articles from Life Sciences:

nachricht Colorectal cancer: Increased life expectancy thanks to individualised therapies
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
20.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>