Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No loose ends

25.02.2008
Tying short RNA molecules into loops gives them a stability boost, which could lead to more effective therapeutic strategies for modulating gene expression

Among the most powerful molecular biology techniques to emerge in recent years is RNA interference, in which small interfering RNA (siRNA) molecules are used to target specific genes to reduce their expression in living organisms. siRNAs have delivered considerable precision and efficiency in modulating gene expression in the laboratory, and many see considerable promise in clinical applications of this technology, although serious technical roadblocks remain to be overcome.

Chief among these is finding a safe and effective means for siRNA delivery. Simple injection of siRNAs is not an option, as RNA is rapidly degraded in the body, and so more complicated strategies are required—each with its own issues.

“Virus vectors that proliferate in vivo are potentially risky … vector systems can not be controlled in cells, and the dose of RNA is very important for clinical RNA interference,” explains Hiroshi Abe, a research scientist in Yoshihiro Ito’s laboratory at the RIKEN Discovery Research Institute in Wako. “If excess RNA is administered, cells respond to foreign body using the immune system.” Another possibility involves the use of chemically modified RNAs that can survive longer within the body, but Abe points out that this stability comes at the cost of reduced efficacy at gene silencing.

... more about:
»RNA »dumbbell »siRNA

Since RNA-degrading enzymes typically start by chewing at loose RNA ends, Ito’s team has taken an innovative approach to deliver natural RNA effectively—they circularized their siRNAs (Fig. 1), designing molecules that self-assembled into stable ‘dumbbell’ shapes1. Since siRNAs begin as double-stranded precursors that must be processed by the enzyme Dicer before they can be effective, a key concern of the team was ensuring that their dumbbell constructs were not just stable, but also capable of being processed by Dicer. The dumbbells performed well on both counts; they outlasted linear siRNA molecules in human serum, and also surpassed linear molecules at triggering specific inhibition of targeted genes when injected into cultured human fibroblast cells.

Encouraged by these initial findings, Ito, Abe and colleagues are now looking into strategies to further enhance the effectiveness of their constructs. These extra-stable dumbbells are also more resistant to processing by Dicer, which reduces their inhibitory capabilities, and Abe indicates that optimizing the dumbbell’s loop structure is now a top priority. In parallel, the researchers are also exploring new methods for siRNA synthesis that could make it easier to scale up production for future studies.

Reference

1. Abe, N., Abe, H. & Ito, Y. Dumbbell-shaped nanocircular RNAs for RNA interference. Journal of the American Chemical Society 129, 15108–15109 (2007).

Saeko Okada | ResearchSEA
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: RNA dumbbell siRNA

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>