Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of a new switch of the immune response

21.02.2008
At the Institut Curie, Inserm researchers, in collaboration with collegues from Dynavax(1), have discovered a new mechanism controlling the choice in humans between two lines of defence in the event of attack. In the presence of viruses or bacteria, the immune system can trigger a response that is rapid but devoid of memory – innate immunity – or a response that takes longer to put in place but is more specifically targeted – adaptive immunity.

The essential prerequisite to the proper functioning of innate immunity is the “turning on” of the protein PI3-kinase. Once PI3-kinase is activated, the immune response is triggered, leading to the production of type I interferons, the spearhead of innate immunity, which destroy the body’s invaders. This discovery opens up new therapeutic prospects since it may suggest ways of restoring the function of innate immunity, which is overactivated in autoimmune diseases and inhibited in certain cancers. This work is published in the 18 February 2008 issue of the Journal of Experimental Medicine.

The body is often faced with attacks from outside (viral or bacterial infection) and sometimes from inside, because of the dysfunction of its own cells (cancer), and defends itself by activating its immune system. There are two types of defence. The first is innate immunity: this has no memory, and is permanently on guard to detect and destroy abnormal cells, tumor cells, or virus-infected cells. The second, which takes longer to initiate, is adaptive immunity, which specifically targets an invader. This response requires a education phase during which the cells of the immune system learn to recognize their enemy.

Dendritic cells, the body’s “sentinels”, are the first line of defence against invading pathogens: they recognize viruses and bacteria and then trigger an immune response, which, depending on the case, may be innate or adaptive. In response to an intruder, the so-called plasmacytoid dendritic cells can either produce large amounts of interferons, molecules that trigger a rapid response against viral infections, or “specialize” and become cells able to teach the immune system to recognize the pathogens.

At the Institut Curie, Vassili Soumelis(2) and his team (“Immunity and Cancer”, Inserm/Institut Curie Unit 653) have discovered how the dendritic cells choose between the two types of immune response. First, whatever the response, the presence of an intruder stimulates the TLR receptor inside the dendritic cells. Only then is the choice made between the two types of response. The PI3-kinase signaling pathway is activated, and the innate response is triggered. Kinase PI3 is the switch that turns on a whole cascade of proteins inside the cell. Information on the presence of an intruder in the body is thus transmitted to its final destination, in the cell’s nucleus, where the protein IRF-7 (transcription factor) modifies the expression of specific genes and so alters the cell’s behavior. In this specific case, IRF-7 induces the production of type 1 interferons (interferon-alpha, for example), which will bring about the destruction of the viruses and strongly activate various cells of the immune system.

Vassili Soumelis MD, PhD at the Institut Curie explains: “Activation of the protein PI3-kinase is one of the very first steps needed for the production of large quantities of type 1 interferons, leading to the triggering or strengthening of the innate immune response.”

In certain autoimmune diseases, like systemic lupus erythematosus(3) or Sjögren’s syndrome(4), this innate response overstimulated, leading to an abnormal defense reaction of the immune system, which attacks its own cells, tissues, or organs. In some cancers, on the other hand, the innate response is virtually absent.

It may be that the cancer cells are able to block the PI3-kinase signaling pathway. Through this discovery, Vassili Soumelis and his collaborators hope, in time, to develop new treatments for use in autoimmune diseases and oncology. By acting on PI3-kinase, it may be possible to adapt the innate response, so as to inhibit it in the treatment of autoimmune diseases and boost it in cancer treatment.

Céline Giustranti | alfa
Further information:
http://www.curie.fr

Further reports about: PI3-kinase attack autoimmune autoimmune diseases immune system immunity innate interferons

More articles from Life Sciences:

nachricht New gene potentially involved in metastasis identified
26.03.2019 | Institute of Science and Technology Austria

nachricht Decoding the genomes of duckweeds: low mutation rates contribute to low genetic diversity
26.03.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>