Single microRNA fine-tunes innate immune response

Relevance: This is the first microRNA shown to play a crucial role in the innate immune response. Absence of microRNA-223 increased the production, differentiation and activation of granulocytes, causing tissue inflammation and damage. Increased production of microRNA-223 may reduce inflammatory conditions and thus the effects of inflammatory diseases such as acute lung respiratory disease syndrome.

Over the last few years scientists have discovered hundreds of microRNAs—tiny RNAs that regulate the expression of protein-coding genes. However, the functions of these novel molecules in mammals are largely unknown.

Now, scientists in the lab of Whitehead Fellow Fernando Camargo have discovered the first microRNA shown to play a key role in the immune system’s early warning system—the innate immune response. The research, published online on February 17 by Nature, reveals that microRNA-223 controls the production and activation of granulocytes, white blood cells essential for host defense against invading pathogens. The findings may have implications for the treatment of inflammatory conditions as well as leukemia.

“MicroRNA-223 is unique because its expression is entirely restricted to a specific branch of the immune system,” says Camargo. “We found that microRNA-223 is crucial for the development and function of the innate branch of the immune system. Our work suggests that microRNA-223 physiologically fine-tunes both the generation and function of granulocytic cells, delimiting their production and dampening their activation.”

The study indicated that microRNA-223 targets Mefc2, a transcription factor that promotes the expansion of granulocyte cell progenitors. (Transcription factors are proteins that regulate gene expression.) By knocking out Mefc2, the authors found that some of the effects caused by microRNA-223 were eliminated.

The researchers demonstrated that mice modified to lack microRNA-223 expression had up to three times as many granulocytes in their bone marrow and blood. Moreover, the granulocytes matured more rapidly and then reacted more aggressively to stimuli. This increased activity caused tissue inflammation and damage within the lungs with age or, in an acute inflammation model, within the liver, muscle and kidneys.

“If you have an infection in the lungs, granulocytes will migrate to the site of the infection and attack,” says Jonathan Johnnidis, first author of the paper and a former technician in the Camargo lab, and now a graduate student in molecular biology at the University of Pennsylvania. “Once the infection is cleared granulocytes usually migrate away and settle down. However, in this case they didn’t stand down after they were done fighting. Instead they continued an inflammatory response that did more damage.”

“Like a hand grenade once you pop the trigger out, these granulocytes are going to explode, regardless of whether they are surrounded by healthy tissue or harmful bacteria,” adds Camargo. “Lack of microRNA-223 makes it much easier to activate the grenade.”

Camargo plans to further investigate the effect of this microRNA on disease. “Our work suggests that microRNA-223 physiologically fine-tunes both the generation and function of granulocytic cells, delimiting their production and preventing excessive activation,” he says. “Also, since many forms of leukemia express diminished levels of microRNA-223, we are investigating how silencing of this microRNA may contribute to the development of that disease.”

Media Contact

Cristin Carr EurekAlert!

More Information:

http://www.wi.mit.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors