Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new “2 in 1” anticoagulant is isolated from a tick

20.02.2008
The discovery of a new anticoagulant with promising therapeutic value is reported on the 20th of February issue of the journal PLoS ONE1.

Boophilin – as it was named - is particularly interesting due to a capability to block thrombin – probably the most important (and difficult to inhibit) protein in blood clotting – as well as a second pro-coagulant molecule making it the first bivalent thrombin-inhibitor ever described. This specific bivalence suggests that boophilin can be a very effective anti-coagulant even at small quantities, opening the door to the development of new more specific and effective, and so also safer, blood thinning therapies.

When a blood vessel is damaged, bleeding is stopped through a series of chemical reactions that result in the injured wall being “tamponed” by platelets and a fibrillar protein called fibrin, allowing the tissues time to heal. And it is thrombin that, not only mediates the formation of fibrin from blood fibrinogen, but also activates the platelets, making it one of the most crucial enzymes (enzymes are proteins that facilitate specific chemical reactions) in coagulation.

Blood-feeding animals such as cattle ticks – which for proper feeding need to block clotting in their “feeding grounds” - produce anticoagulants, many of which target thrombin. Identification and study of these molecules has been an important area of research in the development of better anti-coagulant therapies for the millions of people at risk of blood clots, which, when untreated, can lead to life-threatening situations, such as heart attacks and strokes. Cardiovascular diseases are, after all, still the major non-accidental cause of death in the developing world

It is in this context that Sandra Macedo-Ribeiro, Pablo Fuentes-Prior, Pedro José Barbosa Pereira and colleagues, working in Portugal, Spain and Germany, looked into the salivary glands of one of the most widespread – and economically damaging – cattle tick, called Boophilus microplus. The fact that Boophilus is so successful suggested that it could be a promising source of new effective anti-coagulants.

And in fact, the researchers found boophilin, which, not only strongly inhibited thrombin but– and this was new among thrombin inhibitors – also a second pro-coagulant.

In order to understand boophilin’s inhibitory mechanism, the next step saw Macedo-Ribeiro, Fuentes-Prior, Pereira and colleagues analysing the three-dimensional crystal structure of the boophilin-thrombin complex. To their surprise, boophilin was found to be composed of two Kunitz domains, which are structural and functional elements that, although frequently found in enzyme inhibitors are, nevertheless, considered poor thrombin inhibitors.

In fact, Kunitz structures normal inhibitory mechanism consists of inserting into the enzyme’s binding centre (also called catalytic centre) a protruding loop structure that blocks its capacity to attach (and consequently affect) other molecules. But thrombin has its catalytic site located within a crevice too narrow for a Kunitz loop to enter and, as result, the only thrombin-inhibitor with a Kunitz architecture so far described – ornithodorin - needed an alternative inhibitory mechanism. Ornithodorin - which has a distorted Kunitz architecture and no loop - binds across thrombin’s catalytic site, blocking its access to any protein. In the analysis of the three-dimensional structure of the boophilin-thrombin complex it was seen that also boophilin – like ornithodorin – blocked thrombin by binding parallel across its active site. In this case, however, this left boophilin’s intact Kunitz’s loop, free to inhibit a second pro-coagulant. It is this “2 in 1” capability that makes boophilin remarkable according to Sandra Ribeiro, the paper’s first author.

The discovery of a common inhibitory mechanism between boophilin and ornithodorin is particularly interesting as the two proteins have very different sequences and the function of a protein is linked to its three-dimensional structure, which, in turn, is determined by its sequence (working as an instruction leaflet for the right protein folding).

This means that, frequently, the three-dimensional structure of a new protein, as well as its function, is deduced from looking into other proteins with similar sequences but with known 3D structure and function. What makes Macedo-Ribeiro, Fuentes-Prior, Pereira and colleagues’ results so interesting is that they clearly show that different sequences on boophilin and ornithodorin result, nevertheless, in the same mechanism of inhibition, and, as such, are an alert for the dangers of predicting a protein function from its sequence.

On the other hand, the details of the interactions between thrombin and boophilin are markedly distinct from those of thrombin-ornithodorin, this time warning against the use of known complex structures to deduce the interaction within other complexes no matter how similar their components appear to be.

But Macedo-Ribeiro, Fuentes-Prior, Pereira and colleagues’ boophilin discovery and structural characterization is also important because it can help in the development of better anti-thrombotic therapies.

Every year millions of people die from clots blocking crucial organs, despite the fact that about two percent of the world (aging) population is already on blood thinning drugs and these numbers show the importance of developing better anti-coagulant therapies. At the moment anti-coagulation drugs still have too many side effects and – because they can interact with other chemicals, including some found on food – are difficult to dosage. Too much anti-coagulant can induce haemorrhages while too little can lead to blood clots that result in thrombosis or strokes. More specific and consequently more effective, and so also safer drugs are necessary and boophilin appears to be a promising start.

Finally, to understand better the mechanisms behind molecules used by parasites such as Boophilus microplus can lead to a better comprehension on how they contribute to disease transmission (in this and other blood feeding organisms) and the discovery of pharmacologically interesting molecules, as well as possible important vaccine targets.

* GPEARI / MCTES - Gabinete de Planeamento, Estratégia, Avaliação e Relações Internacionais / Ministério da Ciência, Tecnologia e Ensino Superior

Catarina Amorim | alfa
Further information:
http://www.plosone.org/doi/pone.0001624

More articles from Life Sciences:

nachricht An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening
25.06.2019 | Johannes Gutenberg-Universität Mainz

nachricht Symbiotic upcycling: Turning “low value” compounds into biomass
25.06.2019 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

For a better climate in the cities: Start-up develops maintenance-free, evergreen moss façades

25.06.2019 | Architecture and Construction

An ion channel with a doorkeeper: The pH of calcium ions controls ion channel opening

25.06.2019 | Life Sciences

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>