Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Therapy "Trains" Immune System to Destroy Brain Cancer Cells

20.02.2008
Study in laboratory rats, conducted at Cedars-Sinai Medical Center,
supports future translation to human trial

A new gene therapy approach that attracts and “trains” immune system cells to destroy deadly brain cancer cells also provides long-term immunity, produces no significant adverse effects and -- in the process of destroying the tumor -- promotes the return of normal brain function and behavioral skills, according to a study conducted by researchers at Cedars-Sinai Medical Center’s Board of Governors Gene Therapeutics Research Institute.

The study was conducted in a recently developed laboratory rat model of glioblastoma multiforme (GBM) that closely simulates outcomes in humans and supports the translation of this procedure to human clinical trials later this year. Results of the study are described in the Feb. 19 issue of Molecular Therapy, the journal of the American Society for Gene Therapy.

“These findings appear to be a significant milestone in creating an effective treatment for glioblastoma multiforme,” said Maria Castro, Ph.D., co-director of the Board of Governors Gene Therapeutic Research Institute and principal investigator of the study. “This therapy significantly improved survival rate, induced long-lasting systemic anti-tumor immunity, and resolved the neuropathological abnormalities caused by the tumors, which has been a stumbling block to many promising treatments.”

The article documents the gene therapy’s effectiveness in killing GBM cells and launching an effective and sustained systemic immune response. It also focuses on the safety of the therapy as well as its ability to restore normal brain function and reverse behavioral deficits caused by large tumors.

Humans with GBM often suffer behavioral abnormalities that affect concentration, memory and balance. In the animal studies, rats exhibited abnormal rotational movements. The research team found that as the tumors grew, they displaced and compressed nerve terminals and impulse-conducting axons. But long-term survivors who had received the gene therapy did not have long-term injury or behavioral impairment resulting from the tumor or the treatment.

“Tumor growth causes behavioral deficits, but even treatments, such as chemotherapy and radiation therapy, can cause learning disabilities and other cognitive problems. In our animal study, this therapy eliminated the tumor mass and reversed the deficits that were caused by the tumor,” said Pedro Lowenstein, M.D., Ph.D., co-principal investigator on the study and director of the Board of Governors Gene Therapeutics Research Institute.

Glioblastoma multiforme, the most common and deadly type of brain cancer, usually claims the lives of victims within six to 12 months of diagnosis. It is extremely difficult to treat for a variety of reasons. GBM tumors grow rapidly, often becoming large before a diagnosis is made. Also, cells readily infiltrate neighboring tissue and migrate to other areas, hampering complete surgical removal. Chemotherapy and radiation therapy are unable to eliminate all residual GBM cells, which frequently become resistant to the treatments.

The blood-brain barrier also prevents chemotherapy from effectively reaching tumor cells, and key cells needed to launch and sustain a systemic anti-tumor immune response – dendritic cells, or antigen-presenting cells – do not naturally occur within the brain.

The gene therapy approach developed at Cedars-Sinai sidesteps all of these challenges. The researchers used a virus stripped of its disease-causing genes as a vehicle to deliver two therapeutic proteins directly into the tumor cells. One protein, FMS like tyrosine kinase 3 ligand (Flt3L), drew dendritic cells into the brain. Another protein, herpes simplex virus type 1 thimidine kinase (HSV1-TK), combined with the antiviral gancyclovir (GCV), killed tumor cells.

Dendritic cells clean up debris from dying cells and in the process alert immune system cells of the existence of foreign entities, or antigens – in this case, GBM cells. Newly “educated” immune system cells then swarm to the tumor cells to destroy them.

In an earlier study, the Cedars-Sinai researchers used HSV1-TK and GCV alone to treat GBM and found that about 20 percent of the animals survived, compared to controls. By adding the dendritic-cell inducing Flt3L, the survival rate jumped to about 70 percent. Systemic immune activity was sustained, even fending off a “re-challenge” with additional tumor cells. In this study, the researchers at the BOG-GTRI reported that this therapy could also revert behavioral abnormalities caused by the growing tumor in the brain.

“In the fairly near future, this combined gene therapy may work synergistically with current therapies, including chemotherapy and radiation therapy, allowing doctors to reduce dosages and avoid side effects,” Dr. Castro said. “But with the safety, effectiveness and curative potential seen in these studies, we are hopeful that gene therapy for GBM could become the new standard of care.”

The study was supported by National Institutes of Health/National Institute of Neurological Disorders and Stroke, The Bram and Elaine Goldsmith and the Medallions Group Endowed Chairs in Gene Therapeutics, the Linda Tallen & David Paul Kane Foundation Annual Fellowship, and the Board of Governors at Cedars-Sinai.

Citation: Cancer Research, Combined immune-stimulation and conditional cytoxic gene therapy provide long term survival in a large glioma model (August 2005).

Simi Singer | Cedars-Sinai Medical Center
Further information:
http://www.cedars-sinai.edu

Further reports about: GBM Governors Treatment behavioral immune therapeutic therapy tumor cells

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>