Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene Therapy "Trains" Immune System to Destroy Brain Cancer Cells

20.02.2008
Study in laboratory rats, conducted at Cedars-Sinai Medical Center,
supports future translation to human trial

A new gene therapy approach that attracts and “trains” immune system cells to destroy deadly brain cancer cells also provides long-term immunity, produces no significant adverse effects and -- in the process of destroying the tumor -- promotes the return of normal brain function and behavioral skills, according to a study conducted by researchers at Cedars-Sinai Medical Center’s Board of Governors Gene Therapeutics Research Institute.

The study was conducted in a recently developed laboratory rat model of glioblastoma multiforme (GBM) that closely simulates outcomes in humans and supports the translation of this procedure to human clinical trials later this year. Results of the study are described in the Feb. 19 issue of Molecular Therapy, the journal of the American Society for Gene Therapy.

“These findings appear to be a significant milestone in creating an effective treatment for glioblastoma multiforme,” said Maria Castro, Ph.D., co-director of the Board of Governors Gene Therapeutic Research Institute and principal investigator of the study. “This therapy significantly improved survival rate, induced long-lasting systemic anti-tumor immunity, and resolved the neuropathological abnormalities caused by the tumors, which has been a stumbling block to many promising treatments.”

The article documents the gene therapy’s effectiveness in killing GBM cells and launching an effective and sustained systemic immune response. It also focuses on the safety of the therapy as well as its ability to restore normal brain function and reverse behavioral deficits caused by large tumors.

Humans with GBM often suffer behavioral abnormalities that affect concentration, memory and balance. In the animal studies, rats exhibited abnormal rotational movements. The research team found that as the tumors grew, they displaced and compressed nerve terminals and impulse-conducting axons. But long-term survivors who had received the gene therapy did not have long-term injury or behavioral impairment resulting from the tumor or the treatment.

“Tumor growth causes behavioral deficits, but even treatments, such as chemotherapy and radiation therapy, can cause learning disabilities and other cognitive problems. In our animal study, this therapy eliminated the tumor mass and reversed the deficits that were caused by the tumor,” said Pedro Lowenstein, M.D., Ph.D., co-principal investigator on the study and director of the Board of Governors Gene Therapeutics Research Institute.

Glioblastoma multiforme, the most common and deadly type of brain cancer, usually claims the lives of victims within six to 12 months of diagnosis. It is extremely difficult to treat for a variety of reasons. GBM tumors grow rapidly, often becoming large before a diagnosis is made. Also, cells readily infiltrate neighboring tissue and migrate to other areas, hampering complete surgical removal. Chemotherapy and radiation therapy are unable to eliminate all residual GBM cells, which frequently become resistant to the treatments.

The blood-brain barrier also prevents chemotherapy from effectively reaching tumor cells, and key cells needed to launch and sustain a systemic anti-tumor immune response – dendritic cells, or antigen-presenting cells – do not naturally occur within the brain.

The gene therapy approach developed at Cedars-Sinai sidesteps all of these challenges. The researchers used a virus stripped of its disease-causing genes as a vehicle to deliver two therapeutic proteins directly into the tumor cells. One protein, FMS like tyrosine kinase 3 ligand (Flt3L), drew dendritic cells into the brain. Another protein, herpes simplex virus type 1 thimidine kinase (HSV1-TK), combined with the antiviral gancyclovir (GCV), killed tumor cells.

Dendritic cells clean up debris from dying cells and in the process alert immune system cells of the existence of foreign entities, or antigens – in this case, GBM cells. Newly “educated” immune system cells then swarm to the tumor cells to destroy them.

In an earlier study, the Cedars-Sinai researchers used HSV1-TK and GCV alone to treat GBM and found that about 20 percent of the animals survived, compared to controls. By adding the dendritic-cell inducing Flt3L, the survival rate jumped to about 70 percent. Systemic immune activity was sustained, even fending off a “re-challenge” with additional tumor cells. In this study, the researchers at the BOG-GTRI reported that this therapy could also revert behavioral abnormalities caused by the growing tumor in the brain.

“In the fairly near future, this combined gene therapy may work synergistically with current therapies, including chemotherapy and radiation therapy, allowing doctors to reduce dosages and avoid side effects,” Dr. Castro said. “But with the safety, effectiveness and curative potential seen in these studies, we are hopeful that gene therapy for GBM could become the new standard of care.”

The study was supported by National Institutes of Health/National Institute of Neurological Disorders and Stroke, The Bram and Elaine Goldsmith and the Medallions Group Endowed Chairs in Gene Therapeutics, the Linda Tallen & David Paul Kane Foundation Annual Fellowship, and the Board of Governors at Cedars-Sinai.

Citation: Cancer Research, Combined immune-stimulation and conditional cytoxic gene therapy provide long term survival in a large glioma model (August 2005).

Simi Singer | Cedars-Sinai Medical Center
Further information:
http://www.cedars-sinai.edu

Further reports about: GBM Governors Treatment behavioral immune therapeutic therapy tumor cells

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>