Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sheep in human clothing – scientists reveal our flock mentality

15.02.2008
Have you ever arrived somewhere and wondered how you got there? Scientists at the University of Leeds believe they may have found the answer, with research that shows that humans flock like sheep and birds, subconsciously following a minority of individuals.

Results from a study at the University of Leeds show that it takes a minority of just five per cent to influence a crowd’s direction – and that the other 95 per cent follow without realising it.

The findings could have major implications for directing the flow of large crowds, in particular in disaster scenarios, where verbal communication may be difficult. “There are many situations where this information could be used to good effect,” says Professor Jens Krause of the University’s Faculty of Biological Sciences. “At one extreme, it could be used to inform emergency planning strategies and at the other, it could be useful in organising pedestrian flow in busy areas.”

Professor Krause, with PhD student John Dyer, conducted a series of experiments where groups of people were asked to walk randomly around a large hall. Within the group, a select few received more detailed information about where to walk. Participants were not allowed to communicate with one another but had to stay within arms length of another person.

... more about:
»Human »flock

The findings show that in all cases, the ‘informed individuals’ were followed by others in the crowd, forming a self-organising, snake-like structure. “We’ve all been in situations where we get swept along by the crowd,” says Professor Krause. “But what’s interesting about this research is that our participants ended up making a consensus decision despite the fact that they weren’t allowed to talk or gesture to one another. In most cases the participants didn’t realise they were being led by others.”

Other experiments in the study used groups of different sizes, with different ratios of ‘informed individuals’. The research findings show that as the number of people in a crowd increases, the number of informed individuals decreases. In large crowds of 200 or more, five per cent of the group is enough to influence the direction in which it travels. The research also looked at different scenarios for the location of the ‘informed individuals’ to determine whether where they were located had a bearing on the time it took for the crowd to follow.

“We initially started looking at consensus decision making in humans because we were interested in animal migration, particularly birds, where it can be difficult to identify the leaders of a flock,” says Professor Krause. “But it just goes to show that there are strong parallels between animal grouping behaviour and human crowds.”

This research was funded by the Engineering and Physical Sciences Research Council and was a collaborative study involving the Universities of Oxford and Wales Bangor. The paper relating to this research, entitled Consensus decision making in human crowds is published in the current issue of Animal Behaviour Journal.

Jo Kelly | alfa
Further information:
http://www.leeds.ac.uk/media/press_releases/current/flock.htm

Further reports about: Human flock

More articles from Life Sciences:

nachricht Hopkins researchers ID neurotransmitter that helps cancers progress
25.04.2019 | Johns Hopkins Medicine

nachricht Trigger region found for absence epileptic seizures
25.04.2019 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>