Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Moss protein plays role in Alzheimer's Disease

12.02.2008
What's moss got to do with it?

Preventing Alzheimer's disease is a goal of Raphael Kopan, Ph.D., professor of molecular biology and pharmacology at the Washington University School of Medicine. The moss plant Physcomitrella patens studied in the laboratory of Ralph S. Quatrano, Ph.D., the Spencer T. Olin Professor and chair of the biology department on WUSTL's Danforth Campus, might inch Kopan toward that goal. Here's how.

The gene presenilin (PS) in mammals provides the catalytic activity for an enzyme called gamma secretase, which cleaves, or cuts, important proteins Notch, Erb4 and the amyloid precursor protein (APP), all key components of communication channels that cells use to arbitrate functions during development. There are two mammalian genes that occur in mammals for which mutations cause an earlier onset of Alzheimer's. One is APP, where a fragment of the protein accumulates in amyloid plaques associated with the disease. Another common site for mutations is found in PS proteins. The enzyme gamma secretase contains PS and works to dispose of proteins stuck in the cellular membrane.

This enzyme, with PS at its core, mediates two cellular decisions. One is to cut APP and, as a byproduct, generate the bad peptide associated with Alzheimer's; the other is to cut the Notch protein in response to specific stimuli. Notch is then free to enter the nucleus of cells where it partakes in regulating normal gene expression. Without Notch activity, a mammal has no chance of living.

Notch is a part of a short-range mammalian communication channel, and for years it has been known to have a working relationship with PS. However, Notch is absent in plant cells, and PS function in plants remained mysterious until Quatrano's post-doctoral researcher, Abha Khandelwal, Ph.D., arrived at WUSTL and was interested in understanding signal transduction in plants.

"When I searched the literature, the plant signal transduction pathways were not very well documented compared to the mammalian counterparts such as Notch," said Khandelwal. "Meanwhile, my husband, Dilip Chandu, Ph.D., was working in the Kopan lab on ways to study functions of PS without interference from its predominant substrate Notch."

This encouraged Khandelwal to search for the PS gene in the genomes of plants including the recently sequenced Physcomitrella patens genome, to which the Quatrano lab had access. In addition to the known Arabidopsis PS, she found the gene in Physcomitrella and asked, "What is PS doing in moss? Is it acting as an enzyme or does it have a different function?"

Forming a collaboration

"Moss, like yeast, has this great ability where you can actually select a gene and remove it, mutate it, or replace it with another gene from any source. This approach allows us to discern a gene's value and function in moss," said Quatrano, who was a world leader in the sequencing of the moss genome. "It is an excellent system to experimentally discern gene function because of this property as well as others that we and a worldwide consortium have developed over the last several years."

Thus, a collaboration was born. By engaging the expertise of the team in the Kopan lab, the Quatrano lab proceeded to experiment with PS in moss, which finally resulted in a fruitful collaboration recently reported in the Proceedings of the National Academy of Science. Khandelwal proceeded to remove PS, and the result was an obvious change — a phenotype. Moss lacking PS looked different, growing with straight, rigid filaments instead of curved and bent filaments like the parent moss with the PS gene intact.

"That showed the gene has an obvious function that clearly did not require Notch. We just don't know exactly what it is yet, but we have proposed a hypothesis to be tested," Quatrano said.

The phenotype piqued Kopan's interest: He saw the potential of looking at the role of PS independent of Notch. Khandelwal and Chandu took the phenotype, switched out a mammalian form of PS into the phenotype and rescued it. Similarly, inserting the moss gene in mammalian cells resulted in reversing some of the losses experienced by animal cells lacking PS function, testifying that the human and moss proteins had an evolutionary conserved function.

"In the moss, the proteins were very nearly interchangeable," Quatrano said. "This suggested that PS has a role outside the Notch pathway and may provide clues in mammalian systems as to its primary role, independent of its substrate in mammalian cells."

"We were amazed to realize that genes from moss and humans were not only structurally conserved but also shared similar functions," Khandelwal said.

Moonlighting protein in mammals

"We spent a lot of time trying to find an activity of PS to circumvent cleavage of APP, which has been very difficult, "Kopan said. "Importantly, the human protein acted in plant cells even if its enzymatic activity was removed by mutation. We stumbled upon an observation that PS proteins in mammals can perform other functions besides the enzymatic ones, that is, outside its role as gamma secretase. We're now looking closely to define these moonlighting functions and determine their contribution to disease."

In moss, the mutant phenotypes suggest PS might play a role in signal gathering, cytoskeleton organization and/or cell wall composition and organization. Quatrano and Khandelwal are investigating. Kopan, Chandu and others are searching for PS's moonlighting activities in mammalian cells.

"As a developmental biologist, my job is to translate the genetic code as if it were a manufacturer's manual, and that is accomplished by gaining detailed understanding of genes and protein function," Kopan said. "Unfortunately, we're doing it one gene at a time, slowly building networks, figuring out what the context is. We can't think of all of it at once. We have to look at a small subset of genes and how they work with their 'friends', and hope that our observations will fit together in one coherent network."

Quatrano said the collaboration between the two labs is a reflection of what the Genomic Age can do.

"Today, sitting at your computer, you can data mine genomes from hundreds of microorganisms, animals, fungi, insects and plants, and you're seeing more evidence of genes being conserved in widely different organisms," Quatrano said. "This collaboration is a perfect example of bringing two labs together that on the surface have nothing in common other than one protein and two people who were aware of the interests of the other. It's led to a significant contribution that hopefully will lead to further clues as to the function of PS."

With this study, the Kopan and Quatrano labs and others could use this outstanding plant model not only to understand some of the off-target affects during Alzheimer's Disease therapy, but also to unravel novel interactions and pathways in plants.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: APP Collaboration Genome Khandelwal Kopan Notch Protein Quatrano enzyme mammalian phenotype

More articles from Life Sciences:

nachricht Cancer cachexia: Extracellular ligand helps to prevent muscle loss
25.02.2020 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

nachricht The genetic secret of night vision
25.02.2020 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Turbomachine expander offers efficient, safe strategy for heating, cooling

25.02.2020 | Power and Electrical Engineering

The seismicity of Mars

25.02.2020 | Earth Sciences

Cancer cachexia: Extracellular ligand helps to prevent muscle loss

25.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>