Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT develops thin-film 'micro pharmacy'

12.02.2008
A new thin-film coating developed at MIT can deliver controlled drug doses to specific targets in the body following implantation, essentially serving as a "micro pharmacy."

The film could eventually be used to deliver drugs for cancer, epilepsy, diabetes and other diseases. It is among the first drug-delivery coatings that can be remotely activated by applying a small electric field.

"You can mete out what is needed, exactly when it's needed, in a systematic fashion," said Paula Hammond, the Bayer Professor of Chemical Engineering and senior author of a paper on the work appearing in the Feb. 11 issue of the Proceedings of the National Academy of Sciences.

The film, which is typically about 150 nanometers (billionths of a meter) thick, can be implanted in specific parts of the body.

... more about:
»Devices »Micro »thin-film

The films are made from alternating layers of two materials: a negatively charged pigment and a positively charged drug molecule, or a neutral drug wrapped in a positively charged molecule.

The pigment, called Prussian Blue, sandwiches the drug molecules and holds them in place. (Part of the reason the researchers chose to work with Prussian Blue is that the FDA has already found it safe for use in humans.)

When an electrical potential is applied to the film, the Prussian Blue loses its negative charge, which causes the film to disintegrate, releasing the drugs. The amount of drug delivered and the timing of the dose can be precisely controlled by turning the voltage on and off.

The electrical signal can be remotely administered (for example, by a physician) using radio signals or other techniques that have already been developed for other biomedical devices.

The films can carry discrete packets of drugs that can be released separately, which could be especially beneficial for chemotherapy. The research team is now working on loading the films with different cancer drugs.

Eventually, devices could be designed that can automatically deliver drugs after sensing that they're needed. For example, they could release chemotherapy agents if a tumor starts to regrow, or deliver insulin if a diabetic patient has high blood sugar.

"You could eventually have a signaling system with biosensors coupled with the drug delivery component," said Daniel Schmidt, a graduate student in chemical engineering and one of the lead authors of the paper.

Other lead authors are recent MIT PhD recipients Kris Wood, now a postdoctoral associate at the Broad Institute of MIT and Harvard, and Nicole Zacharia, now a postdoctoral associate at the University of Toronto.

Because the films are built layer by layer, it is easy to control their composition. They can be coated onto a surface of any size or shape, which offers more design flexibility than other drug-delivery devices that have to be microfabricated.

"The drawback to microfabricated devices is that it's hard to coat the drug over a large surface area or over an area that is not planar," said Wood.

Another advantage to the films is that they are easy to mass-produce using a variety of techniques, said Hammond. These thin-film systems can be directly applied or patterned onto 3D surfaces such as medical implants.

Stefani Wrightman, a 2006 MIT graduate, and Brian Andaya, a recent graduate of the University of Rochester and summer intern at the MIT Materials Processing Center, are also authors on the paper. The research was funded by the National Science Foundation, the Office of Naval Research and MIT's Institute for Soldier Nanotechnologies. Written by Anne Trafton, MIT News Office

Elizabeth A. Thomson | MIT News Office
Further information:
http://web.mit.edu/newsoffice/www

Further reports about: Devices Micro thin-film

More articles from Life Sciences:

nachricht Fish recognize their prey by electric colors
13.11.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection
13.11.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>