Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists confirm new virus responsible for deaths of transplant recipients in Australia

08.02.2008
Establishes high throughput genetic sequencing as powerful tool for pathogen discovery; technology enables improvements in screening for transplant safety

In the first application of high throughput DNA sequencing technology to investigate an infectious disease outbreak, scientists from Columbia University Mailman School of Public Health, the Victorian Infectious Diseases Reference Laboratory (VIRDL) in Melbourne, Australia, the Centers for Disease Control and 454 Life Sciences link the discovery of a new arenavirus to the deaths of three transplant recipients who received organs from a single donor in Victoria, Australia in April 2007. The full findings are published in the March 2008 issue of the New England Journal of Medicine and are now online.

After failing to implicate an agent using other methods including culture, PCR and viral microarrays, RNA from the transplanted liver and kidneys was analyzed using rapid sequencing technology established by 454 Life Sciences and bioinformatics algorithms developed at Columbia. Examination of tens or thousands of sequences yielded 14 that resembled arenaviruses at the protein level. Thereafter, the team cultured the virus, characterized it by electron microscopy and developed specific molecular and antibody assays for infection. The presence of virus in multiple organs, IgM antibodies in the organ donor and increasing titer of antibody in a recipient were used to implicate the virus as the cause of disease. The arenavirus lymphocytic choriomeningitis virus (LCMV) has been implicated in a small number of cases of disease transmission by organ transplantation, however, the newly discovered virus, which may be a new strain of LCMV, is sufficiently different that it could not be detected using existing screening methods.

“High throughput sequencing and methods for cloning nucleic acids of microbial agents directly from clinical samples offer powerful tools for pathogen surveillance and discovery,” stated W. Ian Lipkin, MD, John Snow Professor of Epidemiology and Professor of Neurology and Pathology at Columbia University and director of the Center for Infection and Immunity at the Mailman School of Public Health. He added, “As globalization of travel and trade brings new infectious agents into new contexts, speed and accuracy of pathogen identification are increasingly important when it can alter treatment, assist in containment of an outbreak, or, as in this case, enable improvements in screening that will enhance the safety of transplantation.”

Last spring, scientists from the Victorian Infectious Disease Reference Laboratory contacted Dr. Lipkin after their initial state-of-the-art investigation into the cause of the transplant patient deaths failed to turn up leads. Dr. Lipkin and his team built on their work, utilizing tools for pathogen surveillance and discovery developed at Columbia and 454 Life Sciences.

"The small pieces of viral genetic material recovered through this powerful high throughput sequencing method were used to design specific tests for detecting the virus in clinical samples and enabling detailed characterization.” said Gustavo Palacios, PhD, first author of the paper and assistant professor in the Center for Infection and Immunity at the Mailman School. Surveys at Columbia and the VIRDL revealed that viral RNA was present in a total of 22 out of 30 samples of tissue, blood, or cerebrospinal fluid from all three recipients, and the sequencing was identical in all samples, which is consistent with the introduction of a single virus into all transplant recipients. PCR surveys of other stored plasma specimens from solid organ transplant recipients in the same city and timeframe not linked to the cluster, revealed no evidence of infection with this pathogen. Sherif Zaki and colleagues at the CDC demonstrated the presence of the viral proteins in organs of recipients using antibodies to LCMV, and provided the first pictures of the virus by electron microscopy.

Dr. Lipkin and his team have demonstrated that this technology can be employed to address a wide variety of suspected infectious disease outbreaks. Examples of the successful application of molecular technologies in infectious diseases include the identification of Borna disease virus, Hepatitis C virus, West Nile virus, and SARS coronavirus, among others.

Randee Sacks Levine | EurekAlert!
Further information:
http://www.columbia.edu

Further reports about: Discovery Infectious Lipkin Organ Pathogen Samples Sequencing Viral transplant

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>