Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Weight training' muscles reduce fat, improve metabolism in mice

07.02.2008
Resistance training can reduce body mass

Researchers from the Boston University School of Medicine (BUSM) have demonstrated that in mice, the use of barbells may be as important to losing weight and improving health as the use of running shoes. The discovery builds upon the fact that skeletal muscle consists of two types of fibers.

Endurance training such as running increases the amount of type I muscle fibers, while resistance training such as weightlifting increases type II muscle fibers. Using a mouse genetic model, BUSM researchers demonstrated that an increase in type II muscle mass can reduce body fat which in turn reduces overall body mass and improves metabolic parameters such as insulin resistance. These studies indicate that weight bearing exercise, in addition to endurance training, may benefit overweight people. The study appears in the February 6th issue of Cell Metabolism.

The researchers genetically engineered a mouse, called the MyoMouse, to grow type II fibers by activating a muscle growth-regulating gene. The gene, called Akt1, was engineered in such a way that it could be turned on and off at will by researchers. Even without exercise, activating the gene made the MyoMouse physically stronger. When the gene was de-activated, the mouse returned to its original strength. While stronger and faster than a regular mouse, the MyoMouse did not run with as much endurance on a treadmill, a finding that is consistent with the growth of type II rather than type I muscle. These findings demonstrate that the mouse was genetically programmed to have the characteristics of a lean and powerful sprinter rather than those of a gaunt marathon runner.

In the study, the Akt1 gene was turned off and the MyoMice were fed a high fat/high sugar diet with a similar caloric composition as a meal from a fast food restaurant. Over an eight-week period, the mice became obese and insulin resistant and developed fatty acid deposits in their liver, a condition referred to as hepatic steatosis or fatty liver disease.

The researchers then activated the Akt1 gene in the animals which led to the growth of type II muscle fibers. “Remarkably, type II muscle growth was associated with an overall reduction in body mass, due to a large decrease in fat mass. In addition, blood tests showed that these mice became metabolically normal and their fatty liver disease rapidly resolved,” said senior author Kenneth Walsh, PhD, a professor of medicine and head of Molecular Cardiology at the Whitaker Cardiovascular Institute at BUSM.

The beneficial changes occurred despite the fact that the mice continued to eat the same high-calorie diet and did not display any increase in physical activity. “This work shows that type II muscle just doesn’t allow you to pick up heavy objects, it is also important in controlling whole body metabolism,” added Walsh.

Further analysis found that the mice burned fat because of changes in the physiology and gene expression of their fat and liver cells. “Thus, it appears that the increase in type II muscle fiber orchestrates changes in the body through its ability to communicate with these other tissues,” he said.

These findings indicate that type II muscle has a previously unappreciated role in regulating whole body metabolism through its ability to alter the metabolic properties of remote tissues. These data also suggest that strength training, in addition to the widely-prescribed therapy of endurance training, may be of particular benefit to overweight individuals

Finally, these findings may be relevant for understanding aspects of the aging process. “Beyond the age of thirty, humans lose approximately 6 lbs of muscle mass per decade. Surprisingly, aging individuals predominantly lose type II muscle. Thus a 50 year old may be relatively good at playing tennis or jogging because type I muscle is preserved, but a measurement of grip strength or core body strength could show appreciable declines,” explained Walsh. Therefore, this new study suggests that the loss of type II muscle contributes to the development of obesity and diabetes as we age.

The BUSM researchers suspect that the beneficial effects of muscle growth seen in the MyoMouse are mediated through the production and secretion of a variety of signaling factors. Walsh and his colleagues are currently identifying the novel proteins in muscle that communicate with other tissues. These new proteins, referred to as “myokines” from the Greek words “muscle” and “motion,” may represent new targets for therapies that mimic the benefits of weight training for the treatment of obesity and diabetes as well as muscle wasting disorders.

Gina DiGravio | EurekAlert!
Further information:
http://www.bmc.org
http://www.bumc.bu.edu/Dept/Home.aspx?DepartmentID=106

Further reports about: BUSM HDL-cholesterol MyoMouse fiber liver metabolism reduce strength

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>