Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT applies engineering approach to studying biological pathways

07.02.2008
An MIT team has used an engineering approach to show that complex biological systems can be studied with simple models developed by measuring what goes into and out of the system.

Such an approach can give researchers an alternative way to look at the inner workings of a complicated biological system-such as a pathway in a cell-and allow them to study systems in their natural state.

The MIT researchers focused on a pathway in yeast that controls cells' response to a specific change in the environment. The resulting model is "the simplest model you can ever reduce these systems to," said Alexander van Oudenaarden, W.M. Keck Career Development Professor in Biomedical Engineering and Associate Professor of Physics and senior author of a paper describing the work in the Jan. 25 issue of Science.

Quantitative modeling of a biological pathway normally involves intense computer simulations to crunch all available data on the dozens of relevant reactions in the pathway, producing a detailed interaction map.

... more about:
»Hog1 »SALT »glycerol »inputs »reactions »yeast

"These simulations are difficult to perform and interpret because many model parameters are not or cannot be experimentally measured. Moreover, because there are so many interconnected components in the network, it is difficult to make reliable predictions," said van Oudenaarden.

Alternatively, a complex system can be treated as a "black box," where you don't know what's happening inside but can figure it out by analyzing the system's response to periodic inputs. This approach is widely used in the engineering disciplines but has rarely been applied to analyze biological pathways. The technique is very general and could be used to study any cellular pathway with measurable inputs and outputs, van Oudenaarden said.

"You don't want to open the box, but you want to shake it a little," he said. "Comparing the response when you shake it fast to when you shake it slowly reveals important information about which chemical reactions in the pathway dominate the response."

In the new study, the "black box" is a pathway involving at least 50 reactions. The pathway is activated when yeast cells are exposed to a change in the osmotic pressure of their environment, for example, when salt is added to their growth media.

The researchers controlled the inputs (bursts of salt) and measured output (activity of Hog1 kinase, an enzyme with a pivotal role in the yeast salt-stress response).

They exposed the cells to salt bursts of varying frequency, then compared those inputs with the resulting Hog1 activity.

Using that data and standard methods from systems engineering, they came up with two differential equations that describe the three major feedback loops in the pathway: one that takes action almost immediately and is independent of the kinase Hog1, and two feedbacks (one fast and one slow) that are controlled by Hog1.

The fast feedbacks prevent the yeast cell from shriveling up as water rushes out of the cell into the saltier environment. That is accomplished by increasing the cellular concentration of glycerol, a byproduct of many cell reactions. The presence of glycerol inside the cell balances the extra salt outside the cell so water is no longer under osmotic pressure to leave the cell.

In the short term, glycerol concentration is immediately increased by blocking the steady stream of glycerol that normally exits the cell. In the long-term feedback loop, Hog1 goes to the nucleus and activates a pathway that induces transcription of genes that produce enzymes that synthesize more glycerol. This process takes at least 15 minutes.

During the salt shocks, the short-term response kicks in right away, but the cells also initiate the longer-term responses.

Other authors of the paper are Jerome Mettetal, a recent MIT PhD recipient; Dale Muzzey, a graduate student in biophysics at Harvard; and Carlos Gomez-Uribe, a graduate student in the Harvard-MIT Division of Health Sciences and Technology.

The research was funded by the National Science Foundation and the National Institutes of Health.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

Further reports about: Hog1 SALT glycerol inputs reactions yeast

More articles from Life Sciences:

nachricht Nanotubes built from protein crystals: Breakthrough in biomolecular engineering
15.11.2018 | Tokyo Institute of Technology

nachricht Insect Antibiotic Provides New Way to Eliminate Bacteria
15.11.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>