Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 genes found to play crucial role in cell survival

06.02.2008
New research suggests that two recently discovered genes are critically important for controlling cell survival during embryonic development.

The genes, called E2F7 and E2F8, are the least understood members of a family of genes that play a fundamental role in animal development. Members of this family are also involved in cancers of the breast, bladder, stomach and colon.

This animal study showed that complete loss of the two genes causes massive cell death and is lethal in developing embryos.

It also showed that the two genes prevent this cell death largely by suppressing the activity of another member of the family, called E2f1. This third gene is known to play an important role in triggering programmed cell death, or apoptosis, in embryos.

... more about:
»Development »E2f1 »embryos »survival

The findings by researchers at the Ohio State University Comprehensive Cancer Center are published in the Jan. 15 issue of the journal Developmental Cell, with an accompanying commentary.

“Until now, almost nothing was known about the function of these two genes in animals,” says principal investigator Gustavo Leone, an associate professor of molecular virology, immunology and medical genetics at Ohio State’s Comprehensive Cancer Center.

“Our study not only shows that both these genes are critical for embryonic development, but also how members of this gene family work together to regulate cell survival and proliferation.”

Leone and his colleagues used mice that were missing either E2f7 or E2f8, or both genes, and mice missing both genes and the E2f1 gene.

Their experiments showed that embryos survived, and massive cell death was prevented, if they had at least one copy (of the normal two) of either of the two genes.

When the two genes were entirely missing, however, massive cell death and other problems occurred that were lethal before birth. On the other hand, embryos that were completely missing both genes and missing the E2f1 gene, did not show the massive cell death, although they also died before birth. “This of course means that E2f7 and E2f8 are doing more than just regulating cell death, and we are now exploring new avenues of their function,” Leone says.

“Overall,” he says, “our findings indicate that these two genes are essential for embryonic development and for preventing widespread cell death, mainly by targeting the E2f1 gene.”

Darrell E. Ward | EurekAlert!
Further information:
http://www.osumc.edu

Further reports about: Development E2f1 embryos survival

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>