Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bonn Scientists Simulate Dinosaur Digestion in the Lab

06.02.2008
Scientists from the University of Bonn are researching which plants giant dinosaurs could have lived off more than 100 million years ago. They want to find out how the dinosaurs were able to become as large as they did. In actual fact such gigantic animals should not have existed. The results of the research have now been published in the journal 'Proceedings of the Royal Society B'.

Take 200 milligrammes of dried and ground equisetum, ten millilitres of digestive juice from sheep's rumen, a few minerals, carbonate and water. Fill a big glass syringe with the mix, clamp this into a revolving drum and put the whole thing into an incubator, where the brew can rotate slowly. In this way you obtain the artificial 'dinosaur rumen'.

With this apparatus (also used as a ‘Menke gas production technique’ in assessing food for cows) Dr. Jürgen Hummel from the Bonn Institute of Animal Sciences (Bonner Institut für Tierwissenschaften) is investigating which plants giant dinosaurs could have lived off more than 100 million years ago, since this is one of the pieces which are still missing in the puzzle involving the largest land animals that ever walked the earth. The largest of these 'sauropod dinosaurs' with their 70 to 100 tonnes had a mass of ten full grown elephants or more than 1000 average Germans.

Larger than permitted

... more about:
»Ground »bacteria »equisetum »syringe

How the dinosaurs could ever attain this size is something which scientists from Germany and Switzerland are investigating. The Bonn palaeontologist, Professor Martin Sander, the coordinator of the research group 'Biology of the Sauropod Dinosaurs: The Evolution of Gigantism', says, 'There is a law to which most animals living today conform. The larger an animal, the smaller the density of the population, i.e. the fewer animals of the same species there are per square kilometre.' The larger an animal is, the larger the amount of food it has to have in order to survive. Therefore a specific area can only feed a certain maximum number of animals.

At the same time there is a lower limit to the density of population. If this is undercut, the species dies out: 'In this case diseases can rapidly wipe out the whole stock. Moreover, finding a mate becomes difficult,' Martin Sander explains. An animal like the 100-tonne argentinosaurus should have normally not had this 'minimum population density’, actually it should not have been able to exist. But there are hypotheses for this apparent paradox: for example the giant dinosaurs presumably had a metabolism that was lower than that of mammals. In this context it is unclear how nutritious the plants were that formed their diet.

This question is being investigated by Dr. Jürgen Hummel in conjunction with Dr. Marcus Clauss from the University of Zurich. 'We assume that the herbivorous dinosaurs must have had a kind of fermenter, similar to the rumen in cows today.' Almost all existing herbivores digest their food by using bacteria in this way. The panda is the exception. Because the panda is not like this its digestion is inefficient. It stuffs bamboo leaves into its mouth all day long, in order to meet its energy needs, despite the fact that it does not move about much, thereby saving energy.

Jürgen Hummel transforms glass syringes into simple fermenters, which he fills with bacteria from the sheep's rumen. 'These micro-organisms are very old from an evolutionary point of view; we can therefore assume that they also existed in the past,' he explains. To the mix of bacteria he adds dried and ground food plants: grass, foliage or herbs which still form part of animals’ diet, and for comparison equisetum, Norfolk Island pine or ginkgo leaves, i.e. parts of plants which have been growing for more than 200 million years on earth. The gas formed during the fermentation process presses the plunger out of the syringes. Jürgen Hummel can therefore read the success of the fermentation process directly off their scales. This is measured according to a simple rule: the more gas is produced, the 'higher the quality' of the food.

Equisetum is bad for the teeth

These ‘old’ plants stand their ground surprisingly well compared to today's flora. 'The difference is not as great as might be expected,' Jürgen Hummel emphasises. The bacteria digest ginkgo even better than foliage, but they seem to prefer equisetum most. With it gas production is even higher than with some grasses. Nevertheless, equisetum figures in the diet of comparatively few animals. The reason is that in addition to the toxins present in many modern species it wears down animals’ teeth too much. 'Equisetum contains a lot of silicates,' Jürgen Hummel says. 'It acts like sand paper.'

However, many dinosaurs did not have any molars at all. They just pulled up their food and gulped it down. The mechanical break-up may have been carried out by a ‘gastric mill’. Similar to today's birds, dinosaurs may have swallowed stones with which they ground the food to a paste with their muscular stomach. However, there are no clear indications of this. Only recently the Bonn palaeontologist Dr. Oliver Wings doubted that dinosaurs had bezoar stones, at least this assumption could not be verified from fossil findings.

Dr. Jürgen Hummel | alfa
Further information:
http://www.itw.uni-bonn.de

Further reports about: Ground bacteria equisetum syringe

More articles from Life Sciences:

nachricht In focus: Peptides, the “little brothers and sisters” of proteins
12.11.2018 | Technische Universität Berlin

nachricht How to produce fluorescent nanoparticles for medical applications in a nuclear reactor
09.11.2018 | Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences (IOCB Prague)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>