Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein Folding Modifies the Water in the Environment: RUB Chemistry Observes “THz Dance“ Changes

06.02.2008
Just a few weeks ago, teams from Bochum, Illinois, and Nevada were able to prove with terahertz (THz) spectroscopy that proteins do modify water molecules in their environment to a long range extent:

The water molecules, which generally move around like disco dancers in their collective network motions behave more like in a neat minuet under protein influence. The group by Prof. Dr. Martina Havenith-Newen (Physical Chemistry II Dpt., RUB) managed to find out more about the rules of this dance. They could show that protein folding changes the dancing steps of the water.

A partly unfolded protein will affect water molecules within the dynamical hydration shell to a much less extent than a folded one does. The higher the flexibility of the protein, the less affected is the water. The scientists present their conclusions as a “communication“ in the Journal of the American Chemical Society.

Protein Creates Order in Water

... more about:
»Havenith-Newen »RUB »THz »water molecules

In water, weak bonds between two adjacent water molecules, referred to as the hydrogen bridge bonds, are continuously opening and closing: this happens on average every 1.3 pico seconds (one pico second = 10 power -12 seconds). “Even small concentrations of proteins in water lead to measurable changes in collective movements“, Prof. Havenith-Newen explains the results of previous studies with THz spectroscopy.

The Folding is the Important Thing

While the folded protein affects up to 1,000 water molecules in its environment, this is only true for the partly unfolded protein to a small extent. If one modifies some parts of the protein through mutation, the effect is less remarkable. These observations were now made by the scientific teams of Prof. Havenith-Newen, Prof. Dr. Martin Gruebele, and Prof. Dr. David M. Leitner from RUB, the University of Illinois and the University of Nevada, respectively. “This shows that water in the environment of folded proteins is different from that in the environment of an unfolded protein“, Prof. Havenith-Newen concludes. ”This will further support the hypothesis that protein and water are not independent of each other and do influence each other – an effect which has been considered decisive for protein folding, and which may be highly important for protein functions.“

New, Highly Precise Method of Proof

THz spectroscopy is a new, especially sensitive method of observing fast water network movement in the close vicinity of proteins with the THz frequencies ranging between microwave and infrared frequencies. Particularly strong THz laser radiation sources lasers, which has been used in chemistry for the first time by RUB, facilitates the observation of proteins in their natural environment during their fast dance with water molecules. The studies which have been published in the Journal of the American Chemical Society were financed by the Human Frontier Science Programme. Martin Gruebele has stayed at the RUB Chemistry Department after being awarded the Friedrich Wilhelm Bessel prize of the Alexander von Humboldt foundation.

Prof. Dr. Martina Havenith-Newen | alfa
Further information:
http://pubs.acs.org/cgi-bin/abstract.cgi/jacsat/asap/abs/ja0746520.html

Further reports about: Havenith-Newen RUB THz water molecules

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>