Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trainor Lab prevents rare birth defect by inactivating p53 gene

05.02.2008
Using a mouse model of Treacher Collins Syndrome (TCS), the Stowers Institute’s Trainor Lab has demonstrated that it can prevent this rare disorder of craniofacial development either by inactivating a gene implicated in the abnormality or by inhibiting its protein product.

The work, which was posted to the Web site of the journal Nature Medicine yesterday, is a follow-up to the team’s 2006 discovery of the cellular cause of TCS.

The team evaluated how a mutated TCOF1 gene causes the death of neural crest cells that should otherwise form most of the bone, cartilage, and connective tissue that make up the head and face during embryonic development. The loss of these cells results in abnormal development of the ear, nose, and upper and lower jaw, including cleft palate.

The team discovered that chemical inhibition of a single protein, the product of the p53 gene, could prevent the craniofacial abnormalities caused by the TCOF1 mutation. They also showed that inactivation of the p53 gene itself enabled neural crest cells to survive and form normal craniofacial structures in embryos carrying the TCOF1 mutation.

“Inhibition of the p53 protein was enough to prevent neural crest cells from dying during early embryogenesis and essentially rescue the mouse embryo from the devastating craniofacial features associated with TCS,” said Natalie Jones, Ph.D., formerly a Postdoctoral Research Associate in the Trainor Lab and first author on the paper. “The successful rescue of neural crest cell development in a congenital craniofacial anomaly such as TCS is exciting because it provides an attractive model for the prevention of other craniofacial birth defects of similar origins.”

“These findings are the culmination of years of efforts to better understand TCS,” said Paul Trainor, Ph.D., Associate Investigator and senior author on the paper. “People diagnosed with severe TCS typically undergo multiple, major reconstructive surgeries that are rarely fully corrective. The inhibition of p53 brings us much closer to our ultimate goal — preventing TCS and the suffering it causes altogether.”

“By its very nature, the progress of basic biomedical research is incremental,” said Robb Krumlauf, Ph.D., Scientific Director. “We learn a little bit at a time over many years, and each new discovery contributes to a more comprehensive understanding of a disease. This discovery by the Trainor Lab is what all of those years of hard work are about — ultimately learning enough to treat, cure, or prevent a devastating disease.”

“These meticulously performed experiments by members of the Trainor Lab and their colleagues elegantly demonstrate the power of science to address the cause and prevention of birth defects,” said William Neaves, Ph.D., President and CEO. “All of us at the Stowers Institute celebrate their landmark accomplishment.”

Marie Jennings | EurekAlert!
Further information:
http://www.stowers-institute.org

Further reports about: TCS Trainor birth craniofacial neural p53 specimen processing

More articles from Life Sciences:

nachricht New gene potentially involved in metastasis identified
26.03.2019 | Institute of Science and Technology Austria

nachricht Decoding the genomes of duckweeds: low mutation rates contribute to low genetic diversity
26.03.2019 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

The struggle for life in the Dead Sea sediments: Necrophagy as a survival mechanism

26.03.2019 | Earth Sciences

Mangroves and their significance for climate protection

26.03.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>