Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

T cell immunity enhanced by timing of interleukin-7 therapy

05.02.2008
That the cell nurturing growth factor interleukin-7 can help ramp up the ability of the immune system to remember the pathogenic villains it encounters is well known.

But precisely how this natural protein works its magic on the cells of the immune system is not well understood. Now, however, in research that may have implications for developing vaccines against HIV and cancer, a team of scientists from the University of Wisconsin-Madison has found that the timing of interleuin-7 therapy is critical for increasing the number of killer cells that zero in on and destroy virus-infected cells.

Writing in the current online issue (Feb. 1, 2008) of the Journal of Clinical Investigation, a team led by UW-Madison School of Veterinary Medicine Professor of pathobiological sciences Marulasiddappa Suresh reports that therapeutic administration of interleukin-7 can be linked to a stage of early infection to effectively increase the number of a type of killer cell that recognizes and selectively assassinates virus-infected cells.

"These cells need to get interleukin-7 for their survival," explains Suresh, of the killer immune cell known as CD8 T cells, a type of white blood cell that attacks virus-infected cells, foreign cells and cancer cells. Interleukin-7 is produced in very small amounts in bone marrow, spleen, and the thymus, but scientists have been able to isolate and synthesize the agent, which is now in pre-clinical testing for a variety of conditions.

"This is one of the most exciting cytokines in pre-clinical human trials," says Suresh. "The idea is that it might be used as an immune restorative agent. It is absolutely essential for normal development and functioning of the immune system."

Effectively stimulating the immune system -- the complex of organs and cells that defends the body against infection and disease -- is a grail of biomedical science in the fight against infectious diseases.

Suresh explains that upon infection, the body unleashes an army of T cells to fight infected or rogue cells. But when the body perceives an infection may be contained, the number of T cells it deploys is dramatically reduced. However, a certain number of T cells, known as memory cells and that are capable of recognizing a recently vanquished foe, remain. Stimulating memory T and B cells is the basis of vaccination, but vaccines often do not induce a sufficient number of memory CD8 T cells.

Interleukin-7 is a well-studied growth factor that is known to help generate and maintain the immune system's “memory” CD8 T cells, which have the ability to remember the identity of its targets, such as cancer cells or cells that have been taken over by a virus. A paucity of interleukin-7 is believed to limit the survival and persistence of memoryCD8 T cells.

Despite the promise of interleukin-7 as a means to bolster immunity, an optimal treatment regimen has yet to be determined.

In studies in mice, Suresh and his colleagues found that T cell memory is best enhanced when interleukin-7 is administered during a phase of infection when the number of T cells is ramping down.

In the new Wisconsin study, Suresh's group gave interleukin-7 to mice during different stages of a viral infection. They found that by administering interleukin-7 when the number of T cells is in decline, it is possible to increase the number of memory CD8 T cells that remain to stand guard and protect against re-infection.

"The purpose of the immune response is to expand these cells," says Suresh, explaining that T cells act like serial killers, snuffing one infected cell after another until the viral infection is controlled.

During the expansion phase of infection, when the body is generating the most T cells, administration of interleukin-7 seems to have no effect, according to Suresh. But during the contraction phase, memory is increased.

"We tried this in a DNA vaccine and it works," says Suresh. "Even with the weakest vaccine, we could increase the memory cells and improve protection against infection. What this shows is that the number of memory cells are not predetermined. You can increase them and interleukin-7 drives their proliferation."

Marulasiddappa Suresh | EurekAlert!
Further information:
http://www.vetmed.wisc.edu

Further reports about: CD8 Infection Suresh T cells Vaccine immune system interleukin-7

More articles from Life Sciences:

nachricht Mass spectrometry sheds new light on thallium poisoning cold case
14.12.2018 | University of Maryland

nachricht Protein involved in nematode stress response identified
14.12.2018 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>