Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disrupted genetic regulation causes common disturbance in metabolism of fat

05.02.2008
The disease familial combined hyperlipidemia (FCH) is a common cause of disturbed metabolism of fat and early heart attacks. Uppsala University scientists have now developed a pioneering method and can show for the first time what genes are regulated by the gene USF1, which is known to cause the disease. These findings are being presented today in the leading journal Genome Research.

Familial combined hyperlipidemia is caused by the gene USF1, which in turn regulates many other genes, but until now there have been no techniques for finding which ones. Professor Claes Wadelius, at the Department of Genetics and Pathology, Uppsala University, has devised new methods for analyzing genetic regulation and found a number of genes that govern fat levels and energy conversion. The breakthrough is a result of close collaboration with Professor Jan Komorowski at the Linnaeus Center for Bioinformatics.

How active a gene is is regulated by proteins, called transcription factors, which are bound to the DNA strands. Until now, this has been analyzed in test tubes and only one gene at a time. Claes Wadelius’ research team has developed new high-efficiency methods that improve the results in two crucial ways. On the one hand, living cells are now analyzed, not synthetic genes in test tubes. On the other, the entire human genome is analyzed in a single experiment, not merely a genetic fragment.

The method has been used to find genes that have a disturbed function in the common disease familial combined hyperlipidemia. These patients have elevated levels of cholesterol or other fats, which leads to increased risk of being afflicted by early hardening of the arteries and heart attack. Analyses show that the gene USF1 in turn governs the activities of more than 1,000 genes, several of which determine the body’s levels of fat. It also regulates a number of genes that participate in the cell’s energy production, which provides new ways of understanding disturbances in metabolism. The new methods are 10-100 million times more efficient that the old ones, and the project involved more than a billion analyses. This places great demands on how we register, store, and interpret data.

“Technological advances are making medical research more of an information science. With these precise new methods for analyzing data we have entirely new capabilities for understanding the causes of disturbances in metabolism. In other projects we are using the same methods to understand new causes of cancer,” says Professor Claes Wadelius.

Anneli Waara | alfa
Further information:
http://www.uu.se

Further reports about: Genetic HDL-cholesterol disturbance metabolism

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>