Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less waste in the synthesis of anti-inflammatory drugs

05.02.2008
Dr Francesca Paradisi of the Centre for Synthesis and Chemical Biology (CSCB) at University College Dublin, and Professor Daria Giacomini and co-workers at the University of Bologna, Italy, have developed a highly efficient enzyme-driven process which could be applied to the synthesis of drugs such as Ibuprofen, avoiding the 50% waste of the undesired byproduct generated by current processes.

Their paper published in the Royal Society of Chemistry's Chemical Communications has been tagged as a hot article. Dr Paradisi and her co-workers used an enzyme called horse liver alcohol dehydrogenase to drive a process known as dynamic kinetic resolution (DKR). The researchers believe that this process could be applied to the synthesis of the Profen class of pharmaceutical products and that it represents a real move toward environmentally-friendly chemical processes.

The precursor to Ibuprofen, one of the most commonly used anti-inflammatory agents, is Ibuprofenol, which is a member of a class of molecules called arylpropanols. These molecules like many in nature occur in two forms; these are mirror images known as R and S, like right and left. But the biological activity of Ibuprofen is mainly due to the S form. Using conventional processes for preparing pure S-Ibuprofenol, a maximum conversion of only 50% is possible which is wasteful both economically and environmentally.

Kinetic resolution is based on the idea that the two forms of the molecules react at different rates. With DKR, it is possible to theoretically achieve 100% completion because both R and S forms of the starting material form a chemical equilibrium and exchange. In this way the faster reacting S form is replenished in the course of the reaction at the expense of the slower reacting R form, giving higher yields of the desired product.

... more about:
»Ibuprofen »Waste »anti-inflammatory »synthesis

Enzymes as biocatalysts offer many advantages over conventional chemical catalysts. The use of purified enzymes as reagents for organic synthesis is an important step in the development of environmentally benign or "greener" chemical processes.

Claire Twomey | alfa
Further information:
http://www.ucd.ie

Further reports about: Ibuprofen Waste anti-inflammatory synthesis

More articles from Life Sciences:

nachricht Sensory Perception Is Not a One-Way Street
17.10.2018 | Eberhard Karls Universität Tübingen

nachricht Sex or food? Decision-making in single-cell organisms
17.10.2018 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>