Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less waste in the synthesis of anti-inflammatory drugs

05.02.2008
Dr Francesca Paradisi of the Centre for Synthesis and Chemical Biology (CSCB) at University College Dublin, and Professor Daria Giacomini and co-workers at the University of Bologna, Italy, have developed a highly efficient enzyme-driven process which could be applied to the synthesis of drugs such as Ibuprofen, avoiding the 50% waste of the undesired byproduct generated by current processes.

Their paper published in the Royal Society of Chemistry's Chemical Communications has been tagged as a hot article. Dr Paradisi and her co-workers used an enzyme called horse liver alcohol dehydrogenase to drive a process known as dynamic kinetic resolution (DKR). The researchers believe that this process could be applied to the synthesis of the Profen class of pharmaceutical products and that it represents a real move toward environmentally-friendly chemical processes.

The precursor to Ibuprofen, one of the most commonly used anti-inflammatory agents, is Ibuprofenol, which is a member of a class of molecules called arylpropanols. These molecules like many in nature occur in two forms; these are mirror images known as R and S, like right and left. But the biological activity of Ibuprofen is mainly due to the S form. Using conventional processes for preparing pure S-Ibuprofenol, a maximum conversion of only 50% is possible which is wasteful both economically and environmentally.

Kinetic resolution is based on the idea that the two forms of the molecules react at different rates. With DKR, it is possible to theoretically achieve 100% completion because both R and S forms of the starting material form a chemical equilibrium and exchange. In this way the faster reacting S form is replenished in the course of the reaction at the expense of the slower reacting R form, giving higher yields of the desired product.

... more about:
»Ibuprofen »Waste »anti-inflammatory »synthesis

Enzymes as biocatalysts offer many advantages over conventional chemical catalysts. The use of purified enzymes as reagents for organic synthesis is an important step in the development of environmentally benign or "greener" chemical processes.

Claire Twomey | alfa
Further information:
http://www.ucd.ie

Further reports about: Ibuprofen Waste anti-inflammatory synthesis

More articles from Life Sciences:

nachricht Platinum nanoparticles for selective treatment of liver cancer cells
15.02.2019 | ETH Zurich

nachricht New molecular blueprint advances our understanding of photosynthesis
15.02.2019 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>